Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Oncotarget ; 15: 345-353, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781107

RESUMEN

In the landscape of cancer treatments, the efficacy of coadjuvant molecules remains a focus of attention for clinical research with the aim of reducing toxicity and achieving better outcomes. Most of the pathogenetic processes causing tumour development, neoplastic progression, ageing, and increased toxicity involve inflammation. Inflammatory mechanisms can progress through a variety of molecular patterns. As is well known, the ageing process is determined by pathological pathways very similar and often parallel to those that cause cancer development. Among these complex mechanisms, inflammation is currently much studied and is often referred to in the geriatric field as 'inflammaging'. In this context, treatments active in the management of inflammatory mechanisms could play a role as adjuvants to standard therapies. Among these emerging molecules, Silibinin has demonstrated its anti-inflammatory properties in different neoplastic types, also in combination with chemotherapeutic agents. Moreover, this molecule could represent a breakthrough in the management of age-related processes. Thus, Silibinin could be a valuable adjuvant to reduce drug-related toxicity and increase therapeutic potential. For this reason, the main aim of this review is to collect and analyse data presented in the literature on the use of Silibinin, to better understand the mechanisms of the functioning of this molecule and its possible therapeutic role.


Asunto(s)
Neoplasias , Silibina , Silimarina , Silibina/uso terapéutico , Silibina/farmacología , Humanos , Silimarina/uso terapéutico , Silimarina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
2.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675723

RESUMEN

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Asunto(s)
Apoptosis , Proliferación Celular , Farmacología en Red , Silibina , Silibina/farmacología , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos/farmacología
3.
Cell Signal ; 119: 111186, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643945

RESUMEN

Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Silibina , Silimarina , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Humanos , Silibina/farmacología , Silimarina/farmacología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal/efectos de los fármacos , Células MCF-7 , Línea Celular Tumoral , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proliferación Celular/efectos de los fármacos , Verteporfina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
Phytomedicine ; 128: 155493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484626

RESUMEN

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteínas Inhibidoras de la Diferenciación , Neoplasias Pulmonares , Proteínas de Neoplasias , Silibina , Silibina/farmacología , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Humanos , Animales , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo I/genética , Silimarina/farmacología , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Morfogenética Ósea 6 , Silybum marianum/química , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Femenino
5.
Phytother Res ; 38(4): 1830-1837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353369

RESUMEN

CD44+ cancer stem cells (CSCs) are believed to account for drug resistance and tumour recurrence due to their potential to self-renew and differentiate into heterogeneous lineages. Therefore, efficient treatment strategies targeting and eliminating these CSCs are required. The flavonolignan, Silibinin, has gained immense attention in targeting CD44+ CSCs as it alters functional properties like cell cycle arrest, apoptosis, inhibition of invasion and metastasis and also inhibits a range of molecular pathways. However, its limited bioavailability is a major hurdle in asserting Silibinin as a translational therapeutic agent. Combinatorial therapy of Silibinin with conventional chemotherapeutic drugs is an alternative approach in targeting CD44+ CSCs as it increases the efficacy and reduces the cytotoxicity of chemotherapeutic drugs, thus preventing drug resistance. Certain Silibinin-conjugated nano-formulations have also been successfully developed, through which there is improved absorptivity/bioavailability of Silibinin and a decrease in the concentration of therapeutic drugs leading to reduced cytotoxicity. In this review, we summarise the effectiveness of the synergistic therapeutic approach for Silibinin in targeting the molecular mechanisms of CD44+ CSCs and emphasise the potential role of Silibinin as a novel therapeutic agent.


Asunto(s)
Neoplasias , Humanos , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/uso terapéutico , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas , Silibina/farmacología
6.
Environ Sci Pollut Res Int ; 31(13): 19396-19408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358624

RESUMEN

As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.


Asunto(s)
Carpas , Dioxolanos , Bazo , Animales , Bazo/metabolismo , Caspasa 9/farmacología , Proteína p53 Supresora de Tumor , Silibina/farmacología , Carpas/metabolismo , Citocromos c/metabolismo , Apoptosis , Triazoles/farmacología
7.
J Cosmet Dermatol ; 23(5): 1816-1827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193246

RESUMEN

BACKGROUND: The purpose of this study was to investigate the protective effect of Silibinin-loaded polymeric micelles from human hair against UV-B radiation. METHODS: Eight formulations with different concentrations of Silibinin, Pluronic F-127, and Labrasol-Labrafil were made by a solvent evaporation method, and the selected formulation was chosen by examining their properties like particle size and loading efficiency. Six groups of human hair, including a group that received the selected formulation, were exposed to UV-B radiation and by calculating its factors such as peak-to-valley roughness, RMS roughness, FTIR, and the amount of protein loss, the protective effect of the selected formulation was judged. RESULTS: According to the results, the loading efficiency and particle size of the selected formulation were 45.34% and 43.19 nm. The Silibinin release profile had two parts, fast and slow, which were suitable for creating a drug depot on hair. Its zeta potential also confirmed the minimum electrostatic interference between the formulation and hair surface. The zeta potential of selected formulation was -5.9 mv. Examination of AFM images showed that the selected formulation was able to prevent the increase in peak-to-valley roughness and RMS roughness caused by UV-B radiation. RMS roughness after 600 h of UV radiation in Groups 5 and 6 was significantly lower than the negative control group and the amount of this factor did not differ significantly between 0 and 600, so it can be concluded that the selected formulation containing Silibinin and the positive control group was able to prevent the increase of RMS roughness and hair destruction. In other hands, the two positive control groups and the selected formulation containing Silibinin were able to effectively reduce hair protein loss. CONCLUSION: Silibinin-loaded polymeric micelles were able to effectively protect hair from structural and chemical changes caused by UV-B radiation.


Asunto(s)
Cabello , Micelas , Tamaño de la Partícula , Silibina , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Silibina/farmacología , Silibina/administración & dosificación , Silibina/química , Cabello/efectos de los fármacos , Cabello/efectos de la radiación , Silimarina/farmacología , Silimarina/administración & dosificación , Silimarina/química , Polímeros/química , Liberación de Fármacos/efectos de la radiación , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación
8.
Arch Biochem Biophys ; 753: 109916, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296016

RESUMEN

During persistent hyperglycaemia, albumin, one of the major blood proteins, can undergo fast glycation. It can be expected that timely inhibition of protein glycation might be add quality years to diabetic patients' life. Therefore, this study was designed to analyse the role of silibinin to reduced or delay amadori adduct formation at early glycation and its beneficial effect to improve the glycated albumin structure and conformation. We also analysed cytotoxic effect of amadori-albumin in the presence of silibinin on murine macrophage cell line RAW cells by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. Formation of early glycated product (furosine) in all samples was confirmed by LCMS. Albumin incubated with glucose only showed presence of furosine like structure. Albumin treated with silibinin in the presence of glucose did not show such furosine like peak. This LCMS result showed the silibinin play a protective role in the formation of early glycated product. HMF contents were also reduced in the presence of silibinin, when albumin was incubated with increasing concentrations of silibinin (100 and 200 µM) in the presence of glucose. ANS binding fluorescence decrease by increasing silibinin concentrations with amadori-albumin. SDS-PAGE was also showed that no significant difference in the band mobility of albumin treated with silibinin as compared to native albumin. The secondary conformational alteration in amadori-albumin due to silibinin were confirmed by FTIR. This spectrum showed slight shift in amide I and Amide II band in albumin co-incubated with glucose and silibinin as compared to albumin incubated with glucose only. We further discussed about cytotoxic effect of amadori albumin and its prevention by silibinin. MTT assay results demonstrated that amadori-albumin showed cytotoxic effect on RAW cells but silibinin showed protective role and increased the cell viability. Moreover, the results showed that silibinin has anti-glycating potential and playing a role to prevent the formation of Amadori-albumin in-vitro. Silibinin possesses strong anti-glycating capacity and can improve albumin structure and function at early stage. It might be useful in delaying the progression of diabetes mellitus and its secondary complications at early stage.


Asunto(s)
Antineoplásicos , Diabetes Mellitus , Animales , Ratones , Amidas , Glucosa , Glicosilación , Reacción de Maillard , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Silibina/farmacología , Células RAW 264.7
9.
Artículo en Inglés | MEDLINE | ID: mdl-37855349

RESUMEN

AIM: The study aimed to use network pharmacology research and in vitro experiments to investigate the material basis and molecular mechanisms of silybin in the treatment of papillary thyroid carcinoma. BACKGROUND: Papillary thyroid cancer (PTC) has a decent prognosis; however, recurrence and metastasis are the leading causes of death in patients with PTC. A key research focus in thyroid cancer treatment is the inhibition of PTC proliferation, invasion, and migration. Silybin, the major active element in the traditional Chinese herb silymarin, has been used to treat a range of diseases, including cancer, but no study has been undertaken to determine whether it can help prevent PTC. OBJECTIVE: In this study, we attempted to determine through network pharmacology and in vitro experiments if silybin inhibits the development of papillary thyroid cancer by inhibiting cell cycle and invasive migration. METHODS: To predict the probable targets and underlying mechanisms of silybin against PTC, a network pharmacology research was performed. In vitro experiments were conducted to further evaluate silybin's anti-cancer properties and priority targets against PTC. RESULTS: The datasets revealed a total of 489 silybin targets acting on PTC, and functional enrichment analysis suggested that the target genes were enriched in functions and pathways related to PTC development, invasion, migration, and immunotherapy. By constructing these target PPI networks, the seven hub genes, fibronectin 1 (FN1), tissue inhibitor of metalloproteinases 1 (TIMP1), N-cadherin (CDH2), collagen type III alpha 1 chain (COL3A1), cyclin D1 (CCND1), AP-1 transcription factor subunit (JUN), and hepatocyte growth factor receptor (MET) were found. These hub genes were determined to be highly linked to a worse clinicopathological form, a higher risk of metastatic recurrence, and a worse prognosis of PTC. The common immunological checkpoint gene expression levels were positively correlated with the expression levels of the hub genes. Silybin decreased the proliferative and metastatic capacity of PTC cells, according to in vitro investigations. When PTC was treated with silybin, the FN1/AKT signaling pathway was blocked, CCND1 expression was reduced, and CDH2, Vimentin, Snail, Slug and PD-L1 expressions were dramatically reduced, while E-cadherin expression was significantly elevated. CONCLUSION: These findings provide preliminary evidence that silybin inhibits PTC cell proliferation, metastasis, and invasion by altering the FN1/AKT signaling pathway and inhibiting the EMT process. Silybin can reverse immunosuppression in papillary thyroid cancer by affecting immunological checkpoint gene expression levels. These studies provide a theoretical and experimental scientific basis for the potential anticancer effects of silybin on PTC.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo , Silibina/farmacología , Silibina/uso terapéutico , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Tiroides/genética , Proliferación Celular/genética , Inmunoterapia , Línea Celular Tumoral
10.
Pestic Biochem Physiol ; 197: 105643, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072518

RESUMEN

In the current study, silibinin-loaded nanostructured lipid carriers (Sili-NLCs) was synthesized, and the hepatoprotective effectiveness of Sili-NLCs against diazinon (DZN)-induced liver damage in male mice was evaluated. The emulsification-solvent evaporation technique was applied to prepare Sili-NLCs, and characterized by using particle size, zeta potential, entrapment efficacy (EE %), in vitro drug release behavior, and stability studies. In vivo, studies were done on male mice. Hepatotoxicity in male mice were induced by DZN (10 mg/kg/day, i.p.). Four groups treated with silibinin and Sili-NLCs with the same doses (100 and 200 mg/kg, p.o.). On 31th days, serum and liver tissue samples were collected. Alanine (ALT) and aspartate (AST) aminotransferase levels, oxidative stress biomarkers, inflammatory cytokines, and histopathological alterations were assessed. The Sili-NLCs particle size, zeta potential, polydispersity index (PDI), and EE % were obtained at 220.8 ± 0.86 nm, -18.7 ± 0.28 mV, 0.118 ± 0.03, and 71.83 ± 0.15%, respectively. The in vivo studies revealed that DZN significantly increased the serum levels of AST, ALT, hepatic levels of lipid peroxidation (LPO), and tumor necrosis factor-α (TNF-α), while decreased the antioxidant defense system in the mice's liver. However, Sili-NLCs was more effective than silibinin to return the aforementioned ratio toward the normal situation, and these results were well correlated with histopathological findings. Improvement of silibinin protective efficacy and oral bioavailability by using NLCs caused to Sili-NLCs can be superior to free silibinin in ameliorating DZN-induced hepatotoxicity in male mice.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diazinón , Ratones , Animales , Diazinón/toxicidad , Silibina/farmacología , Portadores de Fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Lípidos
11.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762688

RESUMEN

Keloid scars are fibro-proliferative conditions characterized by abnormal fibroblast proliferation and excessive extracellular matrix deposition. The mammalian target of the rapamycin (mTOR) pathway has emerged as a potential therapeutic target in keloid disease. Silibinin, a natural flavonoid isolated from the seeds and fruits of the milk thistle, is known to inhibit the mTOR signaling pathway in human cervical and hepatoma cancer cells. However, the mechanisms underlying this inhibitory effect are not fully understood. This in vitro study investigated the effects of silibinin on collagen expression in normal human dermal and keloid-derived fibroblasts. We evaluated the effects of silibinin on the expressions of collagen types I and III and assessed its effects on the suppression of the mTOR signaling pathway. Our findings confirmed elevated mTOR phosphorylation levels in keloid scars compared to normal tissue specimens. Silibinin treatment significantly reduced collagen I and III expressions in normal human dermal and keloid-derived fibroblasts. These effects were accompanied by the suppression of the mTOR signaling pathway. Our findings suggest the potential of silibinin as a promising therapeutic agent for preventing and treating keloid scars. Further studies are warranted to explore the clinical application of silibinin in scar management.


Asunto(s)
Queloide , Humanos , Animales , Silibina/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR , Colágeno , Colágeno Tipo I/genética , Mamíferos
12.
Toxicology ; 495: 153598, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544575

RESUMEN

Ischemic stroke is regarded one of the most common causes of brain vulnerability. Silibinin (SIL), extracted from the seeds of Silybinisus laborinum L., has been found to exhibit obvious therapeutic effects on neurodegenerative diseases. GAS6 has been proven to have significant neuroprotective effects; however, the role of SIL and GAS6 in ischemic stroke remains unclear. This study aimed to investigate the protective effects of SIL against cerebral ischemia-reperfusion injury in neuroblastoma N2a cells, as well as the mechanisms involved. Firstly, the toxicity of SIL was evaluated, and safe concentrations were chosen for subsequent experiments. Then, SIL exerts significant neuroprotection against hypoxia/reoxygenation (HR) injury in N2a cells, as manifested by increased cell viability, decreased apoptotic rate, LDH, and ROS generation. Additionally, SIL was found to inhibit HR-induced apoptosis, mitochondria dysfunction, and oxidative stress. However, silencing of GAS6 inhibited the neuroprotective effects of SIL. To sum up, these results suggest that SIL may be a promising therapeutic agent for the treatment of ischemic stroke.


Asunto(s)
Hipoxia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Silibina/farmacología , Hipoxia/tratamiento farmacológico , Hipoxia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Apoptosis
13.
Fish Physiol Biochem ; 49(5): 895-910, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542703

RESUMEN

The aim of this study was to investigate the splenic tissue damage of environmental biological drug avermectin to freshwater cultured carp and to evaluate the effect of silybin on the splenic tissue damage of carp induced by avermectin. A total of 60 carp were divided into 4 groups with 15 carp in each group, including the control group fed with basic diet, experimental group fed with basal diet and exposed to avermectin (avermectin group), experimental group fed with basal diet supplement silybin (silybin group), and experimental group fed with basal diet supplement silybin and exposed to avermectin (silybin + avermectin group). The whole test period lasted for 30 days, and spleen tissue was collected for analysis. In this study, H&E staining, mitochondrial purification and membrane potential detection, ATP detection, DHE staining, biochemical tests, qPCR, immunohistochemistry, and apoptosis staining were used to evaluate the biological processes of spleen tissue injury, mitochondrial function, oxidative stress, apoptosis, and endoplasmic reticulum stress. The results show that silybin protected carp splenic tissue damage caused by chronic avermectin exposure, decreased mitochondrial membrane potential, decreased ATP content, ROS accumulation, oxidative stress, apoptosis, and endoplasmic reticulum stress. Silybin may ameliorate the splenic tissue damage of cultured freshwater carp caused by environmental biopesticide avermectin by alleviating mitochondrial dysfunction and inhibiting PERK-ATF4-CHOP-driven mitochondrial apoptosis. Adding silybin into the diet becomes a feasible strategy to resist the pollution of avermectin and provides a theoretical basis for creating a good living environment for freshwater carp.


Asunto(s)
Carpas , Bazo , Animales , Silibina/farmacología , Apoptosis , Transducción de Señal , Adenosina Trifosfato
14.
Cent Nerv Syst Agents Med Chem ; 23(2): 86-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37612866

RESUMEN

BACKGROUND: Depression and anxiety are the most common mental disorders worldwide. OBJECTIVE: We aimed to review silymarin and silibinin effects and underlying mechanisms in the central nervous system (CNS) for depression and anxiety treatment. METHODS: The research protocol was prepared based on following the PRISMA statement. An extensive search was done in essential databases such as PubMed, Cochrane Library, Web of Science (ISI), Embase, and Scopus. Considering the study inclusion and exclusion criteria, 17 studies were finally included. The desired information was extracted from the studies and recorded in Excel, and the consequences and mechanisms were reviewed. RESULTS: Silymarin and silibinin upregulated brain-derived neurotrophic factor (BDNF) and improved neural stem cells (NSCs) proliferation in the cortex and hippocampus. They also increased neurochemical serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels. Silymarin and silibinin reduced malondialdehyde (MDA) formation and increased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. In addition, silymarin and silibinin reduced interleukin (IL)-6, IL-1ß, and IL-12ß, reducing tumor necrosis factor α (TNF-α) induced neuroinflammation. CONCLUSION: Silymarin and silibinin exert anti-depression and anxiolytic effects by regulating neurotransmitters, endocrine, neurogenesis, and immunologic systems. Therefore, as natural and complementary medicines, they can be used to reduce the symptoms of depression and anxiety; However, more clinical studies are needed in this field.


Asunto(s)
Silimarina , Humanos , Silimarina/farmacología , Silimarina/uso terapéutico , Silibina/uso terapéutico , Silibina/farmacología , Depresión/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/patología , Hipocampo/patología , Glutatión/farmacología
15.
Arch Biochem Biophys ; 744: 109691, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473980

RESUMEN

Ferroptosis, an iron-dependent cell death, is caused by lipid peroxidation. Noteworthily, accumulation of iron and lipid peroxidation are found in the proximity of the neuritic plaque, a hallmark of Alzheimer's disease (AD), but the relationship between ferroptosis and neuroinflammation in AD is unclear. Silibinin, extracted from the Silybum marianum, is possibly developed as an agent for AD treatment from its neuroprotective effect, but the effect of silibinin on sporadic AD that accounts for more than 95% of AD remains unclear. To determine whether silibinin alleviates the pathogenesis of sporadic AD and investigate the underlying mechanisms, STZ-treated HT22 murine hippocampal neurons and intracerebroventricular injection of streptozotocin (ICV-STZ) rats, a sporadic AD model, were used in this study. Results show that silibinin not only promotes survival of STZ-treated HT22 cells, but also ameliorates the cognitive impairment and anxiety/depression-like behavior of ICV-STZ rats. We here demonstrate that silibinin evidently inhibits the protein level of p53 as well as upregulates the protein level of cystine/glutamate antiporter SLC7A11 and ferroptosis inhibitor GPX4, but not p21, leading to the protection against STZ-induced ferroptotic damage. Immunofluorescent staining also shows that accumulation of lipid peroxidation induced by ferroptotic damage leads to increased fluorescence of 8-oxo-deoxyguanosine (8-OHDG), a maker of oxidized DNA. The oxidized DNA then leaks to the cytoplasm and upregulates the expression of the stimulator of interferon gene (STING), which triggers the production of IFN-ß and other inflammatory cascades including NF-κB/TNFα and NLRP3/caspase 1/IL-1ß. However, the treatment with silibinin blocks the above pathological changes. Moreover, in HT22 cells with/without STZ treatment, GPX4-knockdown increases the protein level of STING, indicating that the ferroptotic damage leads to the activation of STING signaling pathway. These results imply that silibinin exerts neuroprotective effect on an STZ-induced sporadic AD model by downregulating ferroptotic damage and thus the downstream STING-mediated neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratas , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Silibina/farmacología , Silibina/uso terapéutico , Regulación hacia Abajo , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estreptozocina/efectos adversos , Modelos Animales de Enfermedad
16.
Drug Des Devel Ther ; 17: 2063-2076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457888

RESUMEN

Objective: Silibinin, a natural product extracted from the seeds of the Silybum marianum, is versatile with various pharmacological effects. However, its clinical application was strongly hampered by its low bioavailability and poor water solubility. Herein, a series of glycosylated silibinin derivatives were identified as novel anti-tumor agents. Materials and Methods: The cell viability was evaluated by CCK8 assay. Furthermore, cell apoptosis and cell cycle progression were tested by flow cytometry. In addition, the pharmacokinetic assessment of compound 15 and silibinin through intravenous administration (i.v., 2 mg/kg) to ICR mice were performed. Results: The synthesized compounds showed better water solubilities than silibinin. Among them, compound 15 exhibited inhibitory activity against DU145 cells with IC50 value of 1.37 ± 0.140 µM. Moreover, it arrested cell cycle at G2/M phase and induced apoptosis in DU145 cells. Additionally, compound 15 also displayed longer half-life (T1/2 = 128.3 min) in liver microsomes than that of silibinin (T1/2 = 82.5 min) and appropriate pharmacokinetic parameters in mice. Conclusion: Overall, glycosylation of silibinin would be a valid strategy for the development of silibinin derivatives as anti-tumor agents.


Asunto(s)
Antineoplásicos , Silimarina , Ratones , Animales , Silibina/farmacología , Silimarina/farmacología , Glicosilación , Ratones Endogámicos ICR , Antineoplásicos/farmacología , Apoptosis , Agua , Línea Celular Tumoral
17.
J Biochem Mol Toxicol ; 37(9): e23408, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37335224

RESUMEN

5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.


Asunto(s)
Antioxidantes , Factor de Necrosis Tumoral alfa , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Silibina/farmacología , Caspasa 3 , Estrés Oxidativo , Oxidantes/farmacología , Fluorouracilo/toxicidad , Superóxido Dismutasa/metabolismo
18.
Front Biosci (Landmark Ed) ; 28(4): 64, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37114542

RESUMEN

BACKGROUND AND AIMS: Normal cells become tumorigenic owing to mutations in oncogenes and tumor suppressor genes modulating cell division. Cancer cells break down extracellular matrix to metastasize other tissues. Therefore, the development of natural and synthetic substances that suppress metastatic enzymes such as matrix metalloproteinase (MMP)-2 and MMP-9 is useful to inhibit metastasis. Silibinin is the main ingredient of silymarin extracted from the seeds of milk thistle plants having lung cancer-suppressing effects and liver protection. The purpose of this study was to investigate the inhibitory effect of silibinin on the invasion of human fibrosarcoma cells. METHODS: The effect of silibinin on cell viability was measured in HT1080 cells using an MTT assay. The MMP-9 and MMP-2 activities were analyzed using a zymography assay. The expression of proteins in cytoplasm related to metastasis was examined by western blot analysis and immunofluorescence assay. RESULTS: In this study, silibinin above 20 µM showed growth inhibitory effects. Silibinin above 20 µM remarkably inhibited the levels of MMP-2 and MMP-9 activation under phorbol myristate acetate (PMA) treatment conditions. Furthermore, silibinin at 25 µM reduced the levels of MMP-2, IL-1ß, ERK-1/2, and p-p38 expression and silibinin above 10 µM inhibited cell invasion on HT1080 cells. CONCLUSIONS: These findings indicate that silibinin may have an inhibitory effect on the enzymes involved in invasion, hence it might influence the metastatic ability of tumor cells.


Asunto(s)
Fibrosarcoma , Metaloproteinasa 2 de la Matriz , Humanos , Silibina/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Línea Celular Tumoral , Metaloproteinasas de la Matriz/farmacología , Fibrosarcoma/tratamiento farmacológico , Movimiento Celular , Invasividad Neoplásica
19.
Phytother Res ; 37(8): 3572-3582, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37115717

RESUMEN

Anaphylaxis is a type of potentially fatal hypersensitivity reaction resulting from the activation of mast cells. Many endogenous or exogenous factors could cause this reaction. Silibinin is the main chemical component of silymarin and has been reported to have pharmacological activities. However, the anti-allergic reaction effect of silibinin has not yet been investigated. This study aimed to evaluate the effect of silibinin to attenuate pseudo-allergic reactions in vivo and to investigate the underlying mechanism in vitro. In this study, calcium imaging was used to assess Ca2+ mobilization. The levels of cytokines and chemokines, released by stimulated mast cells, were measured using enzyme immunoassay kits. The activity of silibinin was evaluated in a mouse model of passive cutaneous anaphylaxis (PCA). Western blotting was used to explore the related molecular signaling pathways. In results, silibinin markedly inhibited mast cell degranulation, calcium mobilization, and preventing the release of cytokines and chemokines in a dose-dependent manner via the PLCγ and PI3K/Akt signaling pathway. Silibinin also attenuated PCA in a dose-dependent manner. In summary, silibinin has an anti-pseudo-allergic pharmacological activity, which makes it a potential candidate for the development of a novel agent to arrest pseudo-allergic reactions.


Asunto(s)
Anafilaxia , Antialérgicos , Ratones , Animales , Silibina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Degranulación de la Célula , Mastocitos , Calcio/metabolismo , Transducción de Señal , Anafilaxia/tratamiento farmacológico , Citocinas/metabolismo , Quimiocinas/metabolismo , Antialérgicos/farmacología
20.
Anticancer Agents Med Chem ; 23(13): 1519-1534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37055902

RESUMEN

Silybum marianum (SM) belongs to the family Asteraceae, which holds therapeutic significance in medicinal chemistry. Phytochemistry analysis revealed an abundance of active constituents, particularly silymarin, composed of polyphenols and flavonolignans. Silymarin is majorly found in leaves, seeds, and fruits and is comprised of seven flavonolignans. Silymarin derivatives, specifically silybin, were reported for their medicinal properties. This review summarizes the studies conducted to evaluate SM's pharmacological properties and proposed mechanisms. SM exhibited anticancer properties due to being capable of modifying the induction of apoptosis, inhibiting the STAT3 pathway, decreasing the transcription of various growth factors, impeding the growth of 4T1 cells and inducing cell cycle arrest in various types of cancers, i.e., skin cancer, liver cancer, breast cancer, ovarian cancer etc. Silymarin and its derivatives protect the liver and ameliorate various immune-mediated and autoimmune hepatic diseases. Moreover, antimicrobial, antidiabetic, cardioprotective, nephroprotective, and neuroprotective activities were also reported. Based on testified in vitro and in vivo studies, SM can serve as an alternative to cure various pathological ailments.


Asunto(s)
Silybum marianum , Silimarina , Humanos , Silybum marianum/química , Silimarina/farmacología , Silibina/farmacología , Frutas/química , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA