Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
1.
Biomater Adv ; 160: 213830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552500

RESUMEN

Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Glicerol/análogos & derivados , Nanopartículas , Poliésteres , Polímeros , Tecnología Inalámbrica , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Nanopartículas/química , Polímeros/química , Poliésteres/química , Curcumina/administración & dosificación , Curcumina/química , Glicerol/química , Masculino , Neoplasias de la Próstata/terapia , Antineoplásicos/administración & dosificación , Decanoatos/química , Nanofibras/química , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/métodos
2.
Expert Opin Drug Deliv ; 21(3): 495-511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396366

RESUMEN

OBJECTIVE: Breast cancer is a global health concern that demands attention. In our contribution to addressing this disease, our study focuses on investigating a wireless micro-device for intratumoral drug delivery, utilizing electrochemical actuation. Microdevices have emerged as a promising approach in this field due to their ability to enable controlled injections in various applications. METHODS: Our study is conducted within a computational framework, employing models that simulate the behavior of the microdevice and drug discharge based on the principles of the ideal gas law. Furthermore, the distribution of the drug within the tissue is simulated, considering both diffusion and convection mechanisms. To predict the therapeutic response, a pharmacodynamic model is utilized, considering the chemotherapeutic effects and cell proliferation. RESULTS: The findings demonstrate that an effective current of 3 mA, along with an initial gas volume equal to the drug volume in the microdevice, optimizes drug delivery. Microdevices with multiple injection capabilities exhibit enhanced therapeutic efficacy, effectively suppressing cell proliferation. Additionally, tumors with lower microvascular density experience higher drug concentrations in the extracellular space, resulting in significant cell death in hypoxic regions. CONCLUSIONS: Achieving an efficient therapeutic response involves considering both the characteristics of the tumor microenvironment and the frequency of injections within a specific time frame.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , Sistemas de Liberación de Medicamentos , Técnicas Electroquímicas , Microambiente Tumoral , Tecnología Inalámbrica , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Sistemas de Liberación de Medicamentos/instrumentación , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Proliferación Celular/efectos de los fármacos , Modelos Biológicos , Simulación por Computador
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269545

RESUMEN

For decades, scientists have been doing a lot of research and exploration to find effective long-term analgesic and/or disease-modifying treatments. Microneedles (MNs) are a simple, effective, and painless transdermal drug delivery technology that has emerged in recent years, and exhibits great promise for realizing intelligent drug delivery. With the development of materials science and fabrication technology, the MN transdermal drug delivery technology has been applied and popularized in more and more fields, including chronic illnesses such as arthritis or diabetes, cancer, dermatocosmetology, family planning, and epidemic disease prevention, and has made fruitful achievements. This paper mainly reviews the latest research status of MNs and their fabrication methodology, and summarizes the application of MNs in the treatment of various diseases, as well as the potential to use nanotechnology to develop more intelligent MNs-based drug delivery systems.


Asunto(s)
Enfermedad Crónica/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/instrumentación , Administración Cutánea , Diseño de Equipo , Humanos , Microinyecciones
4.
Fluids Barriers CNS ; 19(1): 3, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991647

RESUMEN

BACKGROUND: The blood-cerebrospinal fluid (CSF) barrier (BCSFB) is critically important to the pathophysiology of the central nervous system (CNS). However, this barrier prevents the safe transmission of beneficial drugs from the blood to the CSF and thus the spinal cord and brain, limiting their effectiveness in treating a variety of CNS diseases. METHODS: This study demonstrates a method on SD rats for reversible and site-specific opening of the BCSFB via a noninvasive, low-energy focused shockwave (FSW) pulse (energy flux density 0.03 mJ/mm2) with SonoVue microbubbles (2 × 106 MBs/kg), posing a low risk of injury. RESULTS: By opening the BCSFB, the concentrations of certain CNS-impermeable indicators (70 kDa Evans blue and 500 kDa FITC-dextran) and drugs (penicillin G, doxorubicin, and bevacizumab) could be significantly elevated in the CSF around both the brain and the spinal cord. Moreover, glioblastoma model rats treated by doxorubicin with this FSW-induced BCSFB (FSW-BCSFB) opening technique also survived significantly longer than untreated controls. CONCLUSION: This is the first study to demonstrate and validate a method for noninvasively and selectively opening the BCSFB to enhance drug delivery into CSF circulation. Potential applications may include treatments for neurodegenerative diseases, CNS infections, brain tumors, and leptomeningeal carcinomatosis.


Asunto(s)
Antibacterianos/farmacocinética , Antineoplásicos/farmacocinética , Barrera Hematoencefálica , Líquido Cefalorraquídeo , Plexo Coroideo , Sistemas de Liberación de Medicamentos , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Ratas , Ratas Sprague-Dawley , Sonido
5.
J Sci Food Agric ; 102(1): 41-52, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460939

RESUMEN

Phenolic compounds are abundant in nature and have multiple beneficial effects on human health due to their antioxidant, anti-inflammatory, antithrombotic, antiallergenic, anticancer, and antiatherosclerotic properties. For this reason, phenolics are becoming relevant functional ingredients for several industries, mainly the food industry, derived from food consumer exigencies and regulations. However, the use of their beneficial properties still presents some limitations, such as chemical instability under environmental and processing conditions, which leads to structural changes and compromises their biological activities. They also present poor water solubility and sensitivity to pH changes, decreasing their bioavailability in the organism. The technologies for extraction and stabilization of these compounds have evolved rapidly in the development of different delivery systems to encapsulate sensitive active molecules. Biopolymeric nanoparticles are biodegradable polymer-based colloidal systems with sizes ranging from 1 to 1000 nm, and different techniques can be carried out to develop them. These systems have emerged as a green and effective alternative to improve stability, bioavailability, and biological effects of phenolic compounds. This comprehensive review aims to present an overview of recent advances in encapsulation processes of phenolic compounds within biopolymer nanoparticles as delivery systems and the impact on their physicochemical properties and biological effects after encapsulation. © 2021 Society of Chemical Industry.


Asunto(s)
Biopolímeros/química , Sistemas de Liberación de Medicamentos/instrumentación , Nanopartículas/química , Fenoles/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Estabilidad de Medicamentos , Humanos , Fenoles/farmacología
6.
Dermatol Surg ; 48(1): 120-125, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904578

RESUMEN

BACKGROUND: Topical medications play a large role in the management of cutaneous diseases, but penetration is limited. Device-assisted drug delivery using mechanical destruction, lasers, and other energy-based modalities can increase penetration and absorption through creation of transcutaneous channels. OBJECTIVE: To examine real-time, in vivo cutaneous changes in response to various devices used to improve topical drug delivery through optical coherence tomography (OCT) imaging. METHODS AND MATERIALS: Treatment was performed with 8 medical devices, including mechanical destruction, lasers, and other energy-based modalities. Optical coherence tomography was used for real-time, noninvasive, in vivo imaging. RESULTS: Using OCT, microneedling and radiofrequency microneedling demonstrated no cutaneous channels. Both low-energy, low-density, fractional nonablative lasers produced transient channels, which closed within hours. The fractional nonablative 1,927-nm thulium fiber and 1,550-nm erbium fiber lasers created channels with epidermal debris within, which were still closing at 24 hours. The fractional thermomechanical ablative device and the fractional ablative CO2 laser produced channels that were still open at 24 hours. CO2 laser channels had thick rims of coagulated tissue and remained open for longer. CONCLUSION: Demonstrable differences among the devices were seen, and only some can produce observable channels, the characteristics of which vary with each technology.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Rayos Láser , Absorción Cutánea/efectos de la radiación , Piel/diagnóstico por imagen , Administración Cutánea , Humanos , Piel/metabolismo , Piel/ultraestructura , Tomografía de Coherencia Óptica
7.
Braz. J. Pharm. Sci. (Online) ; 58: e20803, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1420503

RESUMEN

Abstract Liquid crystalline systems of glyceryl monooleate/water are used as drug delivery systems due to their complex structure that controls drug diffusion. Mucoadhesive properties of glyceryl monooleate suggest it can be used for buccal delivery. Using additives is a strategy to modify physical and chemical properties of liquid crystalline systems and optimize their performance as a drug delivery system. However, the presence of additives can significantly alter properties such as phase behavior, swelling and mucoadhesion. Our aim is to investigate the influence of additives on swelling and mucoadhesion of glyceryl monooleate-based liquid crystals, intending them to be used as buccal drug delivery systems. The systems were characterized regarding their mesophases, swelling rate, and mucoadhesion. All the systems studied were able to absorb water and presented mucoadhesion, which is interesting for the development of buccal drug delivery systems. Additives induced phase transitions and affected the swelling performance, while mucoadhesive properties were poorly affected. Propylene glycol increased water uptake, while oleic acid induced the phase transition to the hexagonal phase and reduced the swelling rate. The association of oleic acid (5%) and propylene glycol (10%) resulted in a cubic phase system with strong mucoadhesive properties that can be a potential drug carrier for buccal delivery.


Asunto(s)
Ácido Oléico/efectos adversos , Cristales Líquidos/clasificación , Administración Bucal , Preparaciones Farmacéuticas/análisis , Sistemas de Liberación de Medicamentos/instrumentación
8.
Braz. J. Pharm. Sci. (Online) ; 58: e191133, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1394030

RESUMEN

Abstract The study is aimed at investigating the functional physicochemical and solid state characteristics of food-grade Tetracarpidium conophorum (T. conophorum) oil for possible application in the pharmaceutical industry for drug delivery. The oil was obtained by cold hexane extraction and its physicochemical properties including viscosity, pH, peroxide, acid, and thiobarbituric acid values, nutrient content, and fatty acid profile were determined. Admixtures of the oil with Softisan®154, a hydrogenated solid lipid from palm oil, were prepared to obtain matrices which were evaluated by differential scanning calorimetry, fourier-transform infrared spectroscopy, and x-ray diffractometry. Data from the study showed that T. conophorum oil had Newtonian flow behaviour, acidic pH, insignificant presence of hyperperoxides and malondialdehyde, contains minerals including calcium, magnesium, zinc, copper, manganese, iron, selenium, and potassium, vitamins including niacin (B3), thiamine (B1), cyanocobalamine (B12), ascorbic acid (C), and tocopherol (E), and long-chain saturated and unsaturated fatty acids including n-hexadecanoic acid, 9(Z)-octadecenoic acid, and cis-13-octadecenoic acid. The lipid matrices had low crystallinity and enthalpy values with increased amorphicity, and showed no destructive intermolecular interaction or incompatibility between T. conophorum oil and Softisan® 154. In conclusion, the results have shown that, in addition to T. conophorum oil being useful as food, it will also be an important excipient for the development of novel, safe, and effective lipid-based drug delivery systems.


Asunto(s)
Aceites/análisis , Preparaciones Farmacéuticas/administración & dosificación , Química Física/instrumentación , Euphorbiaceae/clasificación , Análisis Espectral/métodos , Sistemas de Liberación de Medicamentos/instrumentación , Alimentos/clasificación
9.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948352

RESUMEN

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft's antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.


Asunto(s)
Antibacterianos/administración & dosificación , Prótesis Vascular , Sistemas de Liberación de Medicamentos , Tobramicina/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Tobramicina/química , Tobramicina/farmacología , Injerto Vascular
10.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769180

RESUMEN

Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Neoplasias Experimentales/diagnóstico por imagen , Imagen Óptica/instrumentación , Animales , Línea Celular Tumoral , Pollos , Ratones , Fantasmas de Imagen
11.
Anticancer Res ; 41(11): 5489-5498, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34732419

RESUMEN

BACKGROUND/AIM: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is known to show uneven distribution and penetration of agents based on the nozzle position. Thus, this study aimed to investigate the ideal nozzle position for maximizing drug delivery during PIPAC. MATERIALS AND METHODS: We created 2 cm-, 4 cm- and 8 cm-ex vivo models according to the distance from the bottom to the nozzle using 21×15×16 cm-sized sealable plastic boxes. After each set of eight normal peritoneal tissues from swine were placed at eight different points (A to H), we performed PIPAC, compared the methylene blue staining areas to investigate the distribution, and estimated the depth of concentrated diffusion (DCD) and the depth of maximal diffusion (DMD) of doxorubicin. RESULTS: In terms of distribution, the 4 cm- and 8 cm-ex vivo models showed more stained faces than the 2 cm-ex vivo model. Regarding the penetration depth, the 4 cm- ex vivo model showed the highest DCD (mean; 244.1 µm, C; 105.1 µm, D; 80.9 µm, E; 250.2 µm, G; 250.2 µm, H) and DMD (mean; 174.8 µm, D; 162.7 µm, E; 511.7 µm, F; 522.2 µm, G; 528.1 µm, H) in the most points corresponding to 62.5%. CONCLUSION: The ideal nozzle position during PIPAC might be halfway between the nozzle inlet and the bottom in the ex vivo model.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/instrumentación , Neoplasias Peritoneales/tratamiento farmacológico , Peritoneo/metabolismo , Aerosoles , Animales , Antibióticos Antineoplásicos/metabolismo , Antineoplásicos/metabolismo , Difusión , Doxorrubicina/metabolismo , Diseño de Equipo , Presión , Sus scrofa , Distribución Tisular
12.
Anticancer Res ; 41(11): 5817-5820, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34732456

RESUMEN

AIM: Novel glass membrane pumping emulsification devices (GMDs) enable the formation of a high-percentage water-in-oil emulsion with homogeneous and stable droplets. Although GMDs are expected to improve therapeutic effects in transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC), clinical outcomes are not yet available. PATIENTS AND METHODS: A total of 26 patients with unresectable HCC who underwent TACE using a GMD were analyzed retrospectively. Ethiodized oil was mixed with epirubicin solution using a GMD. The emulsion was injected into the tumor-feeding artery, followed by embolization. RESULTS: The median size of HCCs was 28 (range=15-60) mm, and 15 nodules were solitary. Overall treatment effects were complete response in 18 cases (90%) and partial response in two (10%). The local recurrence rate at 6 months was 24.2%. No major complication was observed except for grade 4 elevations of liver enzymes in one case. CONCLUSION: TACE using a GMD is effective and safe in clinical practice.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Quimioembolización Terapéutica , Sistemas de Liberación de Medicamentos/instrumentación , Epirrubicina/administración & dosificación , Aceite Etiodizado/administración & dosificación , Vidrio , Neoplasias Hepáticas/tratamiento farmacológico , Membranas Artificiales , Anciano , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Quimioembolización Terapéutica/efectos adversos , Emulsiones , Epirrubicina/efectos adversos , Diseño de Equipo , Aceite Etiodizado/efectos adversos , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Carga Tumoral
13.
Theranostics ; 11(20): 10012-10029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815801

RESUMEN

Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.


Asunto(s)
Terapia Biológica/métodos , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Administración Cutánea , Bacterias , Terapia Biológica/tendencias , Células , Inmunoterapia/métodos , Inmunoterapia/tendencias , Agujas , Piel/efectos de los fármacos , Vacunación/métodos , Vacunación/tendencias , Virus
14.
Nat Commun ; 12(1): 6116, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675204

RESUMEN

Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulator flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion with flhDC increases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Caspasa 3/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Hepáticas/prevención & control , Neoplasias Pulmonares/tratamiento farmacológico , Salmonella/genética , Animales , Bacteriólisis , Carcinoma Hepatocelular/fisiopatología , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Sistemas de Liberación de Medicamentos/instrumentación , Femenino , Humanos , Neoplasias Hepáticas/secundario , Masculino , Ratones , Salmonella/fisiología , Salmonella typhimurium
15.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504013

RESUMEN

Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting ß cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.


Asunto(s)
Encapsulación Celular/métodos , Sistemas de Liberación de Medicamentos/métodos , Células Secretoras de Insulina/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Convección , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Sistemas de Liberación de Medicamentos/instrumentación , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Masculino , Ratas
16.
ACS Appl Mater Interfaces ; 13(38): 45315-45324, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34520665

RESUMEN

Active targeted therapy for bowel cancer using untethered microrobots has attracted extensive attention. However, traditional microrobots face challenges, such as issues of mobility, biocompatibility, drug loading, sustained-release capabilities, and targeting accuracy. Here, we propose an untethered triple-configurational magnetic robot (TCMR) that is composed of three geometrically nested parts: actuation and guarding, anchoring and seeding, and drug release part. A targeting magnetic driving system actuates the TCMR along the predetermined trajectory to the target position. The pH-sensitive actuation and guarding part formed by electrodeposition is degraded in the intestinal environment and separates from the two other parts. A majority of magnetic nanoparticles encapsulated in this part are retrieved. The anchoring and seeding part anchors the lesion area and seeds the drug release part in the gaps of intestinal villi by hydrolysis. Ultimately, the drug release part containing the therapeutic completes the sustained release to prolong the duration of the therapeutic agent. Cytotoxicity and therapeutic tests reveal that TCMRs are biocompatible and suitable for targeted therapy and have good therapeutic performance. The newly designed TCMR will provide new ideas for targeted therapy, thus expanding the application scope of robotics technology in the biomedical field.


Asunto(s)
Antineoplásicos/farmacología , Preparaciones de Acción Retardada/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Administración Oral , Alginatos/administración & dosificación , Alginatos/química , Alginatos/toxicidad , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/toxicidad , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/instrumentación , Liberación de Fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fenómenos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/toxicidad , Ratones , Nanomedicina/instrumentación , Nanomedicina/métodos
17.
ACS Appl Mater Interfaces ; 13(34): 40278-40289, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424666

RESUMEN

It is hard to achieve safe, effective, and minimally invasive therapies on myocardial infarction (MI) via conventional treatments. To address this challenge, a vascular endothelial growth factor (VEGF)-loaded and near-infrared (NIR)-triggered self-unfolding graphene oxide (GO)-poly(vinyl alcohol) (PVA) microneedle (MN) patch was designed and fabricated to treat MI through a minimally invasive surgery (MIS). The folded MN patch can be easily placed into the chest cavity through a small cut (4 mm) and quickly recover to its original shape with 10 s of irradiation of NIR light (1.5 W/cm2, beam diameter = 0.5 cm), thanks to its excellent shape memory effect and fast shape recovery ability. Meanwhile, the unfolded MN patch can be readily punctured into the heart and wrap the heart tightly, thanks to its sufficient mechanical strength and adjustable morphological structure, thus ensuring a high fixation strength to withstand the high-frequency pulsation of the heart. In addition, the prepared MN patch has low cytotoxicity and controllable and sustainable release of VEGF. More importantly, the MN patch can effectively promote neovascularization, reduce myocardial fibrosis, and restore cardiac function, which indicates its promising application prospects in MIS.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Infarto del Miocardio/tratamiento farmacológico , Agujas , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Animales , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Grafito/química , Grafito/efectos de la radiación , Rayos Infrarrojos , Masculino , Ratones , Alcohol Polivinílico/química , Alcohol Polivinílico/efectos de la radiación , Ratas , Factor A de Crecimiento Endotelial Vascular/química
18.
Nat Commun ; 12(1): 5138, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446702

RESUMEN

Immune checkpoint blockade antibodies have promising clinical applications but suffer from disadvantages such as severe toxicities and moderate patient-response rates. None of the current delivery strategies, including local administration aiming to avoid systemic toxicities, can sustainably supply drugs over the course of weeks; adjustment of drug dose, either to lower systemic toxicities or to augment therapeutic response, is not possible. Herein, we develop an implantable miniaturized device using electrode-embedded optical fibers with both local delivery and measurement capabilities over the course of a few weeks. The combination of local immune checkpoint blockade antibodies delivery via this device with photodynamic therapy elicits a sustained anti-tumor immunity in multiple tumor models. Our device uses tumor impedance measurement for timely presentation of treatment outcomes, and allows modifications to the delivered drugs and their concentrations, rendering this device potentially useful for on-demand delivery of potent immunotherapeutics without exacerbating toxicities.


Asunto(s)
Anticuerpos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia/métodos , Neoplasias/química , Neoplasias/tratamiento farmacológico , Animales , Terapia Combinada , Sistemas de Liberación de Medicamentos/instrumentación , Impedancia Eléctrica , Femenino , Humanos , Inmunoterapia/instrumentación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibras Ópticas , Fotoquimioterapia , Prótesis e Implantes
19.
Am Heart J ; 239: 90-99, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052211

RESUMEN

BACKGROUND: Arterial hypertension is a common and life-threatening condition and poses a large global health burden. Device-based treatments have been developed as adjunctive or alternative therapy, to be used with or without antihypertensive medication for treating uncontrolled hypertension. The safety and feasibility of chemical renal denervation (RDN) using the Peregrine Catheter and alcohol were demonstrated in a first-in-man and open-label clinical trials, prompting the initiation of the ongoing TARGET BP OFF-MED and TARGET BP I trials. DESIGN: The TARGET BP trials are randomized, blinded, sham-controlled trials designed to assess the safety and efficacy of alcohol-mediated RDN for the treatment of uncontrolled hypertension in the absence of antihypertensive medications (TARGET BP OFF-MED) or in addition to prescribed antihypertensive medications (TARGET BP I). Subjects with confirmed uncontrolled hypertension and suitable renal artery anatomy are randomized (1:1) to receive either RDN using the Peregrine Kit with alcohol (0.6 mL per renal artery) infused through the Peregrine Catheter or diagnostic renal angiography only (sham procedure). TARGET BP OFF-MED completed enrollment and randomized 96 subjects. TARGET BP I will randomize approximately 300 subjects and will transition to an open-label safety cohort of approximately 300 subjects receiving RDN once the primary efficacy endpoint of the Randomized Controlled Trial (RCT) cohort has been met. Primary endpoints are change in mean 24-hour ambulatory systolic blood pressure from baseline to 8 weeks (TARGET BP OFF-MED) and 3 months (TARGET BP I) post-procedure. CONCLUSION: The TARGET BP trials are the first large-scale, international, randomized trials aimed to investigate the safety and BP lowering efficacy of a novel RDN method, with perivascular alcohol delivery using the Peregrine Kit.


Asunto(s)
Etanol/administración & dosificación , Hipertensión , Arteria Renal/diagnóstico por imagen , Simpatectomía , Dispositivos de Acceso Vascular , Adulto , Antihipertensivos/uso terapéutico , Determinación de la Presión Sanguínea/métodos , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/terapia , Masculino , Evaluación de Resultado en la Atención de Salud/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Soluciones Esclerosantes/administración & dosificación , Simpatectomía/instrumentación , Simpatectomía/métodos , Resultado del Tratamiento
20.
Sci Robot ; 6(52)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34043546

RESUMEN

Swimming biohybrid microsized robots (e.g., bacteria- or sperm-driven microrobots) with self-propelling and navigating capabilities have become an exciting field of research, thanks to their controllable locomotion in hard-to-reach areas of the body for noninvasive drug delivery and treatment. However, current cell-based microrobots are susceptible to immune attack and clearance upon entering the body. Here, we report a neutrophil-based microrobot ("neutrobot") that can actively deliver cargo to malignant glioma in vivo. The neutrobots are constructed through the phagocytosis of Escherichia coli membrane-enveloped, drug-loaded magnetic nanogels by natural neutrophils, where the E. coli membrane camouflaging enhances the efficiency of phagocytosis and also prevents drug leakage inside the neutrophils. With controllable intravascular movement upon exposure to a rotating magnetic field, the neutrobots could autonomously aggregate in the brain and subsequently cross the blood-brain barrier through the positive chemotactic motion of neutrobots along the gradient of inflammatory factors. The use of such dual-responsive neutrobots for targeted drug delivery substantially inhibits the proliferation of tumor cells compared with traditional drug injection. Inheriting the biological characteristics and functions of natural neutrophils that current artificial microrobots cannot match, the neutrobots developed in this study provide a promising pathway to precision biomedicine in the future.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Sistema de Administración de Fármacos con Nanopartículas , Neutrófilos/fisiología , Robótica/instrumentación , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Quimiotaxis , Doxorrubicina/administración & dosificación , Diseño de Equipo , Escherichia coli , Geles , Glioma/tratamiento farmacológico , Magnetismo , Nanopartículas de Magnetita , Ratones , Movimiento (Física) , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA