Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.680
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20553, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232048

RESUMEN

The plasma membrane protein caveolin-1 (CAV-1) regulates signaling by inhibiting a wide range of kinases and other enzymes. Our previous study demonstrated that the downregulation of CAV-1 in psoriatic epidermal cells contributes to inflammation by enhancing JAK/STAT signaling, cell proliferation, and chemokine production. Administration of the CAV-1 scaffolding domain (CSD) peptide suppressed imiquimod (IMQ)-induced psoriasis-like dermatitis. To identify an optimal therapeutic peptide derived from CAV-1, we have compared the efficacy of CSD and subregions of CSD that have been modified to make them water soluble. We refer to these modified peptides as sCSD, sA, sB, and sC. In IMQ-induced psoriasis-like dermatitis, while all four peptides showed major beneficial effects, sB caused the most significant improvements of skin phenotype and number of infiltrating cells, comparable or superior to the effects of sCSD. Phosphorylation of STAT3 was also inhibited by sB. Furthermore, sB suppressed angiogenesis both in vivo in the dermis of IMQ-induced psoriasis mice and in vitro by blocking the ability of conditioned media derived from CAV-1-silenced keratinocytes to inhibit tube formation by HUVEC. In conclusion, sB had similar or greater beneficial effects than sCSD not only by cytokine suppression but by angiogenesis inhibition adding to its ability to target psoriatic inflammation.


Asunto(s)
Caveolina 1 , Citocinas , Imiquimod , Neovascularización Patológica , Psoriasis , Factor de Transcripción STAT3 , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Psoriasis/patología , Psoriasis/metabolismo , Caveolina 1/metabolismo , Animales , Ratones , Citocinas/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Péptidos/farmacología , Péptidos/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Modelos Animales de Enfermedad , Agua/química , Solubilidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Angiogénesis
2.
AAPS PharmSciTech ; 25(7): 204, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237789

RESUMEN

Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.


Asunto(s)
Benzofuranos , Pirrolidinas , Solubilidad , Administración Oral , Animales , Benzofuranos/administración & dosificación , Benzofuranos/farmacocinética , Benzofuranos/química , Benzofuranos/farmacología , Masculino , Pirrolidinas/química , Pirrolidinas/administración & dosificación , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Ratas , Hiperplasia Prostática/tratamiento farmacológico , Antagonistas Muscarínicos/administración & dosificación , Antagonistas Muscarínicos/farmacocinética , Disponibilidad Biológica , Carbonato de Calcio/química , Concentración de Iones de Hidrógeno , Hidrogeles/química , Polímeros/química
3.
Food Res Int ; 194: 114869, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232508

RESUMEN

Genistein could interact with starch to slow starch digestion by forming starch-genistein complexes. However, genistein had low solubility in water, which hindered the interaction with starch and therefore the formation of the complexes. This study presented a pathway to promote the formation of starch-genistein complexes using an antisolvent method in two steps: (i) adding ethanol to the solution containing starch and genistein to increase genistein solubility, and (ii) evaporating ethanol from the solution to promote genistein interaction with starch. The complexes prepared using this antisolvent method had higher crystallinity (9.45 %), complex index (18.17 %), and higher content of resistant starch (RS) (19.04 %) compared to samples prepared in pure water or ethanol-containing aqueous solution without ethanol evaporation treatment (these samples showed crystallinity of 6.97 %-8.00 %, complex index of 9.09 %-11.4 2%, and RS of 4.45 %-14.38 %). Molecular dynamic simulation results confirmed that the changes in solution polarity significantly determined the formation of starch-genistein complexes. Findings offered a feasible pathway to efficiently promote starch interaction with genistein and in turn mitigate starch digestibility.


Asunto(s)
Digestión , Genisteína , Solubilidad , Almidón , Almidón/química , Genisteína/química , Etanol/química , Solventes/química , Simulación de Dinámica Molecular
4.
Carbohydr Polym ; 344: 122466, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218533

RESUMEN

Traditional fungi ß-glucan commonly possesses high molecular weight with poor water solubility, which remains significant challenge in the drug development and medical application. Water-soluble ß-glucan with high molecular weight (dHSCG) of 560 kDa, low molecular weight (dLSCG) of 60 kDa, and sulfated derivative (SCGS) with a molecular weight of 146 kDa and sulfate degree at 2.04 were obtained through well-controlled degradation and sulfated modification from Saccharomyces cerevisiae in this study. The structural characteristics were confirmed as ß-1,3/6-glucan by FT-IR and NMR spectroscopy. Carbohydrate microarrays and surface plasmon resonance revealed distinct and contrasting binding affinities between the natural ß-glucans and sulfated derivatives. SCGS exhibited strong binding to FGF and VEGF, while natural ß-glucan showed no response, suggesting its potential as a novel antitumor agent. Moreover, SCGS significantly inhibited the migration rate of the highly metastatic melanoma (B16F10) cells. The lung metastasis mouse model also demonstrated that SCGS significantly reduced and eliminated the nodules, achieving an inhibition rate of 86.7% in vivo, with a dramatic improvement in IFN-α, TNF-α, and IL-1ß levels. Through analysis of protein content and distribution in lung tissues, the anti-tumor and anti-metastasis mechanism of SCGS involves the regulation of degrading enzymes to protect extracellular matrix (ECM), as well as the reduction of angiogenic factor release. These findings provide a foundation for exploring the potential of SCGS in the development of new anti-tumor and anti-metastasis drugs and open up a new field in cancer research.


Asunto(s)
Antineoplásicos , Saccharomyces cerevisiae , Solubilidad , beta-Glucanos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , beta-Glucanos/química , beta-Glucanos/farmacología , Agua/química , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Sulfatos/química , Movimiento Celular/efectos de los fármacos , Humanos
5.
AAPS PharmSciTech ; 25(7): 199, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198340

RESUMEN

Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.


Asunto(s)
Estabilidad de Medicamentos , Fenbendazol , Liofilización , Nanopartículas , Solubilidad , Nanopartículas/química , Fenbendazol/química , Liofilización/métodos , Rastreo Diferencial de Calorimetría/métodos , Almacenaje de Medicamentos , Tamaño de la Partícula , Difracción de Rayos X/métodos , Liberación de Fármacos , Química Farmacéutica/métodos , Poloxámero/química , Crioprotectores/química
6.
Water Res ; 264: 122215, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154536

RESUMEN

The excessive presence of geogenic ammonium (NH4+) in groundwater poses a global environmental concern, commonly linked to the degradation of nitrogen-containing dissolved organic matter (DOM). However, there is a gap in systematic studies on the combination of soluble organic matter (SOM) in sediments and DOM in groundwater, with few indoor incubation experiments to validate their degradation pathways. This study utilized ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry to analyze the molecular characteristics of DOM and SOM in aquifer systems affected by geogenic NH4+. Subsequently, indoor incubation experiments spanning up to 140 d were conducted to verify the degradation pathways. The experimental results revealed a two-phase degradation process for both the DOM and SOM. The initial stage was characterized by the degradation of aliphatic compounds (ALC) with the production of polyphenols (PPE) and highly unsaturated compounds (HUC). The second stage was dominated by the degradation of PPE and HUC, accompanied by the re-consumption of some ALC, while more recalcitrant HUC persisted. Notably, the first stage of SOM degradation exceeded that of DOM degradation, indicating that SOM exhibited greater resistance to aging. This phenomenon may be attributed to a wider range of active enzymes in sediments, the rapid replenishment of SOM by organic matter in sediments, or the accelerated degradation of DOM. The experimental results aligned with the molecular characterization of DOM and SOM in actual aquifer systems. It is hypothesized that NH4+ produced through the direct mineralization of SOM may contribute more to the enrichment of NH4+ in groundwater than that produced through the mineralization of DOM. This study is the first to analyze DOM and SOM together in aquifer systems and validate their degradation pathways through incubation experiments, thereby providing novel insights into the enrichment of geogenic NH4+ in groundwater.


Asunto(s)
Compuestos de Amonio , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/química , Sedimentos Geológicos/química , Compuestos Orgánicos/química , Solubilidad
7.
Sci Rep ; 14(1): 19999, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198533

RESUMEN

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a vital role in DNA damage repair and lymphocyte function, presenting a significant target in cancer and immune diseases. Current DNA-PKcs inhibitors are undergoing Phase I/II trials as adjuncts to radiotherapy and chemotherapy in cancer. Nevertheless, clinical utility is limited by suboptimal bioavailability. This study introduces DNA-PKcs inhibitors designed to enhance bioavailability. We demonstrate that a novel DNA-PKcs inhibitor, DA-143, surpasses NU7441 in aqueous solubility as well as other available inhibitors. In addition, DA-143 displayed an improvement in DNA-PKcs inhibition relative to NU7441 achieving an IC50 of 2.5 nM. Consistent with current inhibitors, inhibition of DNA-PKcs by DA-143 resulted in increased tumor cell sensitivity to DNA-damage from chemotherapy and inhibition of human T cell function. The improved solubility of DA-143 is critical for enhanced efficacy at reduced doses and facilitates more effective evaluation of DNA-PKcs inhibition in both preclinical and clinical development.


Asunto(s)
Cromonas , Proteína Quinasa Activada por ADN , Morfolinas , Inhibidores de Proteínas Quinasas , Solubilidad , Humanos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Morfolinas/química , Morfolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Cromonas/química , Cromonas/farmacología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
8.
Molecules ; 29(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202926

RESUMEN

The adenosine A2A receptor (A2AR) has been identified as a therapeutic target for treating neurodegenerative diseases and cancer. In recent years, we have highlighted the 2-aminoquinazoline heterocycle as an promising scaffold for designing new A2AR antagonists, exemplified by 6-bromo-4-(furan-2-yl)quinazolin-2-amine 1 (Ki (hA2AR) = 20 nM). Here, we report the synthesis of new 2-aminoquinazoline derivatives with substitutions at the C6- and C7-positions, and the introduction of aminoalkyl chains containing tertiary amines at the C2-position to enhance antagonist activity and solubility properties. Compound 5m showed a high affinity for hA2AR with a Ki value of 5 nM and demonstrated antagonist activity with an IC50 of 6 µM in a cyclic AMP assay. Introducing aminopentylpiperidine and 4-[(piperidin-1-yl)methyl]aniline substituents maintained the binding affinities (9x, Ki = 21 nM; 10d, Ki = 15 nM) and functional antagonist activities (9x, IC50 = 9 µM; 10d, IC50 = 5 µM) of the synthesized compounds while improving solubility. This study provides insights into the future development of A2AR antagonists for therapeutic applications.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Quinazolinas , Receptor de Adenosina A2A , Quinazolinas/química , Quinazolinas/farmacología , Quinazolinas/síntesis química , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/síntesis química , Antagonistas del Receptor de Adenosina A2/farmacología , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/química , Humanos , Relación Estructura-Actividad , Estructura Molecular , AMP Cíclico/metabolismo , Solubilidad , Unión Proteica
9.
Int J Biol Macromol ; 277(Pt 3): 134315, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094886

RESUMEN

With the increasing demand for food foaming, how to enhance the foaming properties of protein has gradually become the research focus. This work studied the effect of synephrine (SY) on foaming properties, structure properties, and physicochemical properties of soybean protein isolate (SPI). When the mass ratio of SY to SPI was 1:2, compared with SPI alone, the foam capacity and foam stability of the SY-SPI complex were significantly enhanced. Optical microscopy and confocal laser scanning microscope showed that the improvement in foaming performance was mainly due to the reduction of bubble size and uniform protein distribution. Circular dichroism spectrum and fluorescence spectra indicated that the hydrogen bond of SPI was destroyed and blue shifted with the addition of SY. What's more, the absolute value of Zeta potential, solubility, and hydrophobicity all increased, while the particle size decreased. As a result of molecular docking, surface hydrogen bonds, Van der Waals forces and hydrophobic interactions are the main driving forces. The addition of SY and SPI improved the specific volume and texture of angel cake. This study shows that SY has the potential to be developed into a new type of blowing agent.


Asunto(s)
Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Polifenoles , Solubilidad , Proteínas de Soja , Proteínas de Soja/química , Polifenoles/química , Simulación del Acoplamiento Molecular , Fenómenos Químicos , Tamaño de la Partícula , Glycine max/química
10.
Food Chem ; 460(Pt 2): 140687, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106813

RESUMEN

The synergistic effects of plasma-activated water (PAW) and twin-screw extrusion (TSE) on the structural, physicochemical, antioxidant, and digestive properties of yam flour (YF) were studied. Compared to common TSE, PAW-TSE reduced the protein, starch, and polyphenol contents, swelling power, and gel property of YF, while PAW-TSE enhanced the flavonoid content, whiteness index, solubility, and antioxidant property of YF. Moreover, the results of structural characterization and differential scanning calorimetry indicated that the long-range or short-range ordering, and gelatinization enthalpy of starch in YF were reduced after PAW-TSE, while the structure ordering of proteins in YF increased. Furthermore, the in vitro digestibility results demonstrated a reduction in the rate of enzymatic hydrolysis, coupled with an increase in total contents of slowly digestible and resistant starch after PAW-TSE. It should be noted that TSE using PAW prepared by a longer plasma treatment resulted in a more significant improvement effect on YF.


Asunto(s)
Antioxidantes , Digestión , Dioscorea , Harina , Solubilidad , Almidón , Agua , Antioxidantes/química , Dioscorea/química , Harina/análisis , Agua/química , Almidón/química , Almidón/metabolismo , Manipulación de Alimentos
11.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125035

RESUMEN

In this study, the protein and salts distribution (Ca, P, Na and Mg) in processed cheese (PC) samples prepared with 180 or 360 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), disodium pyrophosphate (DSPP), sodium hexametaphosphate (SHMP) and trisodium citrate (TSC) was studied. For this purpose, a water-soluble extract (WSE) of PC samples was prepared. All PC samples contained 45-46% moisture, 26-27% fat and 20-21% protein and had a pH of 5.2 or 5.7. Ultracentrifugation slightly reduced the protein content of the WSE of PC, indicating that most protein in the WSE was non-sedimentable. At equal concentration of CSS, the protein content of the WSE was higher for PC at pH 5.7 compared to PC at pH 5.2. Approximately 55-85% of the Ca and P in the WSE of samples was 10 kDa-permeable for PC prepared with DSPP and SHMP. This suggests that the formation of non-permeable Ca-polyphosphate-casein complexes. For PC prepared with TSC, >90% of Ca in the WSE was 10 kDa-permeable, indicating that micellar disruption arises from sequestration of micellar Ca. These results indicate that the WSE method is an appropriate method to understand how salts present in PC are distributed. However, the WSE and ultracentrifugal supernatant of the WSE can include both soluble and protein-associated salts. Therefore, determining levels of salts in 10 kDa permeate of ultracentrifugal supernatant of the WSE is most appropriate.


Asunto(s)
Queso , Difosfatos , Fosfatos , Sales (Química) , Solubilidad , Queso/análisis , Fosfatos/química , Sales (Química)/química , Difosfatos/química , Calcio/química , Citratos/química , Concentración de Iones de Hidrógeno , Manipulación de Alimentos/métodos
12.
Nat Commun ; 15(1): 6717, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112465

RESUMEN

Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.


Asunto(s)
Condensados Biomoleculares , Luz , Proteínas de Unión a Maltosa , Optogenética , Proteína FUS de Unión a ARN , Solubilidad , Proteínas de Unión a Maltosa/metabolismo , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Optogenética/métodos , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/química , Células HeLa
13.
Drug Dev Ind Pharm ; 50(7): 658-670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39093556

RESUMEN

OBJECTIVE: Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE: Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS: the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS: The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION: Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.


Asunto(s)
Antibacterianos , Asparagus , Emulsiones , Componentes Aéreos de las Plantas , Extractos Vegetales , Raíces de Plantas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Componentes Aéreos de las Plantas/química , Asparagus/química , Raíces de Plantas/química , Tamaño de la Partícula , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Solubilidad , Línea Celular Tumoral , Composición de Medicamentos/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación
14.
Food Chem ; 460(Pt 3): 140792, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126939

RESUMEN

The low bioavailability of polyphenolic compounds due to poor solubility and stability is a major challenge. Encapsulation of polyphenols in zein-based composite nanoparticles can improve the water dispersion, stability, targeted delivery, and controlled release of polyphenols in the gastrointestinal tract. In this study, we investigated the fluorescence properties, bioactivity, and microstructural characteristics of polyphenols during digestion, revealing that zein nanoparticles protect polyphenols from gastric degradation and promote their sustained release in the small intestine. The effects of different ionic species and salt ion concentrations on the digestive properties of polyphenol complex delivery systems have also been explored. In addition, the formation of "protein corona" structures during digestion may affect bioavailability. These findings highlight the potential of nanoparticle formulations to improve polyphenol stability and absorption. The results of this study may provide new insights and references for the study of polyphenol bioavailability enhancement.


Asunto(s)
Disponibilidad Biológica , Curcumina , Nanopartículas , Zeína , Zeína/química , Nanopartículas/química , Curcumina/química , Curcumina/metabolismo , Humanos , Digestión , beta-Ciclodextrinas/química , Portadores de Fármacos/química , Solubilidad , Polifenoles/química , Polifenoles/metabolismo , Animales
15.
J Mol Graph Model ; 132: 108840, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39128382

RESUMEN

Baicalein, a flavone derived from Scutellaria baicalensis Georgi, exhibits potent anti-inflammatory, antiviral, and anticancer properties. Its derivative, known as 8-bromobaicalein (BB), has been found to have strong cytotoxic effect on MCF-7 human breast cancer cells. However, its limited solubility in water has hindered its potential for wider applications. To address this issue, we investigated the use of cyclodextrins specifically ßCD, 2,6-di-O-methyl-ß-cyclodextrin (DMßCD), and hydroxypropyl-ß-cyclodextrin (HPßCD) to improve the solubility of BB through inclusion complexation. During 250 ns molecular dynamics simulations, it was found that BB can form inclusion complexes with all ßCDs. These complexes exhibit two distinct orientations: chromone group insertion (C-form) and phenyl group insertion (P-form). The formation of these complexes is primarily driven by van der Waals interactions. DMßCD has the highest number of atom contacts with BB and the lowest solvent accessibility in the hydrophobic cavity. These results coincide with the highest binding affinity from the MM/GBSA-based free energy calculation method. Experimental phase solubility diagrams revealed a 1:1 stoichiometric ratio (AL type) between BB and ßCDs, in which BB/DMßCD showed the highest stability. The formation of inclusion complexes was confirmed by differential scanning calorimetry and scanning electron microscope methods. Additionally, the BB/DMßCD inclusion complex demonstrated significantly higher anticancer activity against MCF-7 human breast cancer cells compared to BB alone. These findings underscore the potential of DMßCD for formulating BB in pharmaceutical and medical applications.


Asunto(s)
Simulación de Dinámica Molecular , Solubilidad , beta-Ciclodextrinas , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Humanos , Células MCF-7 , Flavanonas/química , Flavanonas/farmacología , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Termodinámica , Antineoplásicos/química , Antineoplásicos/farmacología
16.
Int J Pharm ; 663: 124574, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39134290

RESUMEN

Microfluidic technology has not been extensively utilized in nanocrystals manufacture, although it has been used in the production of liposomes and LNPs. This is mainly due to concerns including blockage of narrow pipes and corrosion of organic solvents on chips. In this study, a detachable stainless steel microfluidic chip with split-and-recombine (SAR) structure was engraved and used to prepare curcumin nanocrystal suspensions by a microfluidic-antisolvent precipitation method. A simulation study of the mixing activities of three chip structures was conducted by COMSOL Multiphysics software. Then the curcumin nanocrystals preparation was optimized by Box-Behnken design to screen different stabilizers and solvents. Two curcumin nanocrystals formulations with an average particle size of 59.29 nm and 168.40 nm were obtained with PDIs of 0.131 and 0.058, respectively. Compared to curcumin powder, the formulation showed an increase in dissolution rate in 0.1 M HCL while pharmacokinetic study indicated that Cmax was increased by 4.47 and 3.14 times and AUC0-∞ were 4.26 and 3.14 times greater. No clogging or deformation of the chip was observed after long usage. The results demonstrate that the stainless steel microfluidic chips with SAR structure have excellent robustness and controllability. It has the potential to be applied in GMP manufacturing of nanocrystals.


Asunto(s)
Curcumina , Nanopartículas , Tamaño de la Partícula , Acero Inoxidable , Curcumina/química , Curcumina/administración & dosificación , Curcumina/farmacocinética , Acero Inoxidable/química , Nanopartículas/química , Animales , Solventes/química , Masculino , Composición de Medicamentos/métodos , Microfluídica/métodos , Dispositivos Laboratorio en un Chip , Solubilidad , Liberación de Fármacos , Técnicas Analíticas Microfluídicas
17.
Int J Pharm ; 663: 124586, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39147249

RESUMEN

This study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations. Our study demonstrates that incorporating albendazole into stable Palmitic Acid Langmuir monolayers, forming Langmuir-Blodgett films, significantly affects the proliferation of liver carcinoma cells. This report presents the initial findings of the effect of an antitumoral drug on cancer cell culture using a simple and repeatable methodology.


Asunto(s)
Albendazol , Antineoplásicos , Proliferación Celular , Sistemas de Liberación de Medicamentos , Albendazol/química , Albendazol/administración & dosificación , Albendazol/farmacología , Humanos , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Línea Celular Tumoral , Antihelmínticos/química , Antihelmínticos/administración & dosificación , Antihelmínticos/farmacología , Solubilidad , Propiedades de Superficie
18.
Int J Pharm ; 663: 124594, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39154920

RESUMEN

3D printing has been introduced as a novel approach for the design of personalized dosage forms and support patient groups with special needs that require additional assistance for enhanced medication adherence. In this study liquid crystal display (LCD) is introduced for the development of sustained release bupropion.HCl printed tablets. The optimization of printing hydrogel inks was combined with the display of Braille patterns on the tablet surface for blind or visually impaired patients. Due to the high printing accuracy, the Braille patterns could be verified by blind patients and provide the required information. Further characterization revealed the presence of BUP in amorphous state within the photopolymerized resins. The selection of poly(ethylene glycol) (PEG)-diacrylate (PEGDA) of different molecular weights and the presence of surfactants or solubilizers disrupted the resin photopolymerization, thus controlling the BUP dissolution rates. A small batch scale-up study demonstrated the capacity of LCD to print rapidly a notable number of tablets within 24 min.


Asunto(s)
Bupropión , Preparaciones de Acción Retardada , Liberación de Fármacos , Polietilenglicoles , Impresión Tridimensional , Comprimidos , Bupropión/química , Bupropión/administración & dosificación , Polietilenglicoles/química , Humanos , Cristales Líquidos/química , Solubilidad
19.
Sci Rep ; 14(1): 20029, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198520

RESUMEN

Cyclodextrin, a potent anti-tumor medication utilized predominantly in ovarian and breast cancer treatments, encounters significant challenges such as poor solubility, potential side effects, and resistance from tumor cells. Combining cyclodextrin with biocompatible substrates offers a promising strategy to address these obstacles. Understanding the atomic structure and physicochemical properties of cyclodextrin and its derivatives is essential for enhancing drug solubility, modification, targeted delivery, and controlled release. In this study, we investigate the topological indices of cyclodextrin using algebraic polynomials, specifically the degree-based M-polynomial and neighbor degree-based M-polynomial. By computing degree-based and neighbor degree-based topological indices, we aim to elucidate the structural characteristics of cyclodextrin and provide insights into its physicochemical behavior. The computed indices serve as predictive tools for assessing the health benefits and therapeutic efficacy of cyclodextrin-based formulations. In addition, we examined that the computed indices showed a significant relationship with the physicochemical characteristics of antiviral drugs. Graphical representations of the computed results further facilitate the visualization and interpretation of cyclodextrin's molecular structure, aiding researchers in designing novel drug delivery systems with improved pharmacological properties.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Solubilidad , Humanos , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Antivirales/química , Antineoplásicos/química , Antineoplásicos/farmacología
20.
Int J Nanomedicine ; 19: 8417-8436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176130

RESUMEN

Purpose: Docetaxel (DTX) is a valuable anti-tumor chemotherapy drug with limited oral bioavailability. This study aims to develop an effective oral delivery system for DTX using natural nanoparticles (Nnps) derived from Coptidis Rhizoma extract. Methods: DTX-loaded self-assembled nanoparticles (Nnps-DTX) were created using an optimized heat-induction strategy. Nnps-DTX's shape, size, Zeta potential, and in vitro stability were all carefully examined. Additionally, the study investigated the encapsulation efficiency, loading capacity, crystal form, and intermolecular interactions of DTX in Nnps-DTX. Subsequently, the solubility, release, cellular uptake, metabolic stability, and preclinical pharmacokinetics of DTX in Nnps-DTX were systematically evaluated. Finally, the cytotoxicity of Nnps-DTX was assessed in three tumor cell lines. Results: Nnps-DTX was spherical in shape, 138.6 ± 8.2 nm in size, with a Zeta potential of -20.8 ± 0.6 mV, a DTX encapsulation efficiency of 77.6 ± 8.5%, and a DTX loading capacity of 6.8 ± 1.9%. Hydrogen bonds, hydrophobic interactions, and electrostatic interactions were involved in the formation of Nnps-DTX. DTX within Nnps-DTX was in an amorphous form, resulting in enhanced solubility (23.3 times) and release compared to free DTX. Following oral treatment, the mice in the Nnps-DTX group had DTX peak concentrations 8.8, 23.4, 44.6, and 5.7 times higher in their portal vein, systemic circulation, liver, and lungs than the mice in the DTX group. Experiments performed in Caco-2 cells demonstrated a significant increase in DTX uptake by Nnps-DTX compared to free DTX, which was significantly inhibited by indomethacin, an inhibitor of caveolae-mediated endocytosis. Furthermore, compared to DTX, DTX in Nnps-DTX demonstrated better metabolic stability in liver microsomes. Notably, Nnps-DTX significantly reduced the viability of MCF-7, HCT116, and HepG2 cells. Conclusion: The novel self-assembled nanoparticles considerably enhanced the cellular absorption, solubility, release, metabolic stability, and pharmacokinetics of oral DTX and demonstrated strong cytotoxicity against tumor cell lines.


Asunto(s)
Docetaxel , Nanopartículas , Animales , Docetaxel/farmacocinética , Docetaxel/química , Docetaxel/farmacología , Docetaxel/administración & dosificación , Humanos , Administración Oral , Nanopartículas/química , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Ratones , Línea Celular Tumoral , Coptis chinensis , Tamaño de la Partícula , Masculino , Liberación de Fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Disponibilidad Biológica , Solubilidad , Ratas Sprague-Dawley , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA