Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.579
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Ethnopharmacol ; 336: 118731, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182698

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Calyptrochilum emarginatum (Afzel. Ex Sw.) Schltr. (Orchidaceae) is a traditional medicinal plant known for its antimicrobial properties and efficacy in managing convulsive fever and menstrual disorders and addressing conditions such as malaria, tuberculosis, and cough. AIM OF THE STUDY: The study aims to examine the memory-enhancing and neuroprotective properties of ethanol extract of Calyptrochilum emarginatum leaves (EECEL) in scopolamine-induced amnesia mice model. MATERIALS AND METHODS: Forty-two male mice were divided into six groups (n = 7). Group 1 served as control, administered distilled water (10 mL/kg, p. o), group 2 received scopolamine only (3 mg/kg, i. p.), groups 3 to 6 received pretreatments of EECEL (50, 100, and 200 mg/kg, p. o.) and donepezil (1 mg/kg, p. o.) 30 min before scopolamine (3 mg/kg), for seven days. Following treatments, behavioral (learning and memory) assessments were carried out, while biochemical (acetylcholinesterase activity, oxidative stress markers, inflammatory cytokines markers) and histological evaluations were done after euthanasia. RESULTS: Scopolamine significantly impaired spatial, long term and recognition memory. Nevertheless, administration of EECEL (50, 100, and 200 mg/kg orally) enhanced memory function in mice, as observed in the Y maze [F (5, 30) = 20.23, p < 0.0001], Morris water maze [F (10, 90) = 3.105, p = 0.0019; [F (5, 30) = 21.13, p < 0.0001]], and novel object recognition tasks [F (5, 30) = 37.22, p < 0.0001)]. Scopolamine-treated mice exhibited significant dysfunction in the cholinergic system, as evidenced by elevated AChE activity [0.099 ± 0.005 vs. 0.063 ± 0.004 mol/min/g] with an elevation in oxidative stress. On the other hand, administration of EECEL counteracted these consequences by reducing AChE activity, mitigating oxidative damage, reducing pro-inflammatory cytokines, and preventing degeneration of neurons. CONCLUSION: The results demonstrated that EECEL effectively mitigates scopolamine-induced memory impairment via an oxido-inflammatory mechanism and modulation of the central cholinergic system.


Asunto(s)
Amnesia , Etanol , Fármacos Neuroprotectores , Orchidaceae , Extractos Vegetales , Hojas de la Planta , Escopolamina , Animales , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratones , Amnesia/tratamiento farmacológico , Amnesia/inducido químicamente , Etanol/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/aislamiento & purificación , Orchidaceae/química , Estrés Oxidativo/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales de Enfermedad , Memoria/efectos de los fármacos , Solventes/química , Donepezilo/farmacología , Donepezilo/uso terapéutico
2.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274862

RESUMEN

The chestnut tree (Castanea sativa Mill.) is a widespread plant in Europe, rich in high-value compounds, which can be divided mainly into monomeric polyphenols and tannins. These compounds exhibit various biological activities, such as antioxidant, as well as anticarcinogenic and antimicrobial properties. Chestnut wood (CW) extracts were prepared using different extraction techniques, process conditions, solvents, and their mixtures. This work aimed to test various extraction techniques and determine the optimal solvent for isolating enriched fractions of vescalagin, castalagin, vescalin, and castalin from CW residues. Supercritical CO2 extraction with a more polar cosolvent was applied at different pressures, which influenced solvent density. According to the results, the proportions of the components strongly depended on the solvent system used for the extraction. In addition, HPLC-DAD was used for semiqualitative purposes to detect vescalagin, castalagin, vescalin, and castalin. The developed valorization protocol allows efficient fractionation and recovery of the polyphenolic components of CW through a sustainable approach that also evaluates pre-industrial scaling-up.


Asunto(s)
Aesculus , Taninos Hidrolizables , Extractos Vegetales , Madera , Taninos Hidrolizables/química , Extractos Vegetales/química , Aesculus/química , Madera/química , Cromatografía Líquida de Alta Presión , Polifenoles/química , Polifenoles/análisis , Solventes/química , Antioxidantes/química
3.
Environ Sci Pollut Res Int ; 31(43): 55812-55821, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245672

RESUMEN

Organophosphorus pesticides (OPPs) are a group of pesticides that are most widely used in the agricultural sector, and farmers are exposed to these chemicals more than other members of society. In this work, an environmentally friendly, simple, and safe ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) method using alcohol-based hydrophobic deep eutectic solvents (HDESs) followed by gas chromatography-mass spectroscopy (GC-MS) was developed for the extraction and determination of OPPs in the blood of farmers studied in Ravansar cohort. DESs synthesized from thymol as hydrogen bond donor (HBD) and aliphatic alcohols as hydrogen bond acceptor (HBA) have been used as extractants. Under optimal experimental conditions, the reproducibility of the method based on 7 replicate measurements of 10 µg L-1 of OPPs in blood samples was in the range of 1.4-3.8%. The method showed a linearity in the range of 0.01-150 µg L-1. The limits of detection and limits of quantification were between 0.003 and 0.02 µg L-1 and 0.01-0.05 µg L-1, respectively. The matrix effect and accuracy of the method were confirmed by spiking different amounts of OPPs in real blood samples and obtaining relative recoveries in the range of 91-112%. The results showed that the concentration of OPPs in the case group was significantly higher than in the control group, which is because the case group was exposed to OPPs during the spraying of agricultural products.


Asunto(s)
Agricultores , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Líquida , Compuestos Organofosforados , Plaguicidas , Compuestos Organofosforados/química , Plaguicidas/sangre , Humanos , Disolventes Eutécticos Profundos/química , Solventes/química , Interacciones Hidrofóbicas e Hidrofílicas , Alcoholes/química
4.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275067

RESUMEN

Chinese Olea europaea leaves, rich in verbascosides, were extracted using ultrasound-assisted extraction (UAE) and wall-breaking extraction (WBE) with deep eutectic solvents (Optimal UAE: 55 min, 200 mL/g liquid-solid ratio, 20% moisture, yielding 206.23 ± 0.58 mg GAE/g total phenolic content (TPC) and 1.59 ± 0.04% verbascoside yield (VAY); Optimal WBE: 140 s, 210 mL/g, 30% moisture, giving 210.69 ± 0.97 mg GAE/g TPC and 1.33 ± 0.2% VAY). HPLC analysis showed that young leaves accumulated higher TPC and phenolic compounds. Among the five olive varieties, Koroneiki and Chemlal showed the highest TPC in UAE, while Arbosana and Chemlal excelled in WBE. WBE yielded a higher TPC and rutin, whereas UAE marginally increased other phenolics. Additionally, the DPPH• assay showed that WBE-extracted verbascoside-rich extracts (VREs) of Chemlal exhibited high antioxidant activity (EC50 of 57 mg/mL), but Koroneiki-VREs exhibited lower activity against the ABTS•+ radical (EC50 of 134 mg/mL). Remarkably, the UAE/WBE-extracted Chemlal-VREs promoted the normal esophageal Het-1A cell line at 25 µg/mL for 24 h; yet, the esophageal cancer Eca-109 cells were sensibly inhibited, especially at 50 µg/mL; and the cell viability decreased dramatically. The results confirmed WBE as a relatively efficient method, and the Chemlal variety may be an excellent source of verbascoside.


Asunto(s)
Antioxidantes , Glucósidos , Olea , Fenoles , Extractos Vegetales , Hojas de la Planta , Solventes , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Glucósidos/aislamiento & purificación , Glucósidos/química , Glucósidos/farmacología , Olea/química , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Polifenoles , Solventes/química
5.
Water Environ Res ; 96(9): e11126, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286867

RESUMEN

This work presents the results of an investigation on the physiochemical and structural characteristics of polyacrylonitrile (PAN) nanofiltration (NF) membranes prepared using a novel concept of binary solvents for nickel (Ni) removal from wastewater streams. The thermodynamic and kinetic aspects are emphasized aiming to optimize dope formulation, membrane performance, and durability. The fabricated membranes were characterized by scanning electron microscopy (SEM), porosimetry, tensile stress/strain, and flux and rejection. Results revealed that the use of an equal (1:1) mixture of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as dope solvents led to the formation of membranes with enhanced performance, offering pure water flux of 2.33 L·m-2·h-1·bar-1 and Ni rejection of 90.84%. Moreover, the incorporation of 0.5 wt.% PEG as a pore-forming agent to the dope solution further boosted pure water flux to 4.97 L·m-2·h-1·bar-1 with negligible impact on Ni rejection. Besides attractive performance, the adopted strategy offered membranes of exceptionally high flexibility with no sign of defect or failure especially during module fabrication and testing enabling smooth and hassle-free scale-up and extension to other applications. PRACTITIONER POINTS: Optimized solvent mixture: A 1:1 blend of n-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) as solvents resulted in enhanced membrane performance. High flux and Ni rejection: The fabricated membranes exhibited a pure water flux of 2.33 L·m-2·h-1·bar-1 and a remarkable Ni rejection of 90.84%. PEG enhancement: Incorporating 0.5 wt.% PEG as a pore-forming agent further improved the membrane's pure water flux to 4.97 L·m-2·h-1·bar-1, without compromising Ni rejection. Exceptional flexibility: The adopted strategy yielded membranes with exceptional flexibility, making them suitable for scale-ups and other applications.


Asunto(s)
Resinas Acrílicas , Membranas Artificiales , Níquel , Solventes , Aguas Residuales , Contaminantes Químicos del Agua , Níquel/química , Resinas Acrílicas/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Solventes/química , Purificación del Agua/métodos , Filtración/métodos , Eliminación de Residuos Líquidos/métodos
6.
Environ Sci Technol ; 58(37): 16376-16385, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39225344

RESUMEN

Carbon dioxide (CO2) chemisorption using biphasic solvents has been regarded as a promising approach, but challenges remain in achieving efficient dynamic phase-splitting during practical implementation. To address this, the centrifugal force was innovatively adopted to enhance the coalescence and separation of immiscible fine droplets within the biphasic solvent. The comprehensive evaluation demonstrates that centrifugal phase-splitting shows outstanding separation efficiency (>95%) and excellent applicability for various solvents. Correlation analysis reveals a strong relationship between the rich phase's viscosity, lean phase's residual CO2, and the phase separation efficiency. The time-profile behavior of immiscible droplets, observed through microscope images of phase-splitting, enables the estimation of the growth and coalescence rates of the discrete phase. Industrial-scale process simulation for technical and economic analysis confirms that the total capture cost ($ 42.5/t CO2) can be reduced by ∼22% with the use of biphasic solvents and a centrifugal separator compared to conventional methods. This study introduces a fresh perspective on polarity-induced cluster generation and coagulation-induced separation, offering an effective solution to address the challenges associated with dynamic phase-splitting in biphasic solvents during practical applications.


Asunto(s)
Dióxido de Carbono , Solventes , Dióxido de Carbono/química , Solventes/química , Centrifugación , Gases/química
7.
Int J Biol Macromol ; 277(Pt 4): 134443, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39217672

RESUMEN

Laccases hold great potential for biotechnological applications, particularly in environmental pollutant remediation. Laccase activity is governed by the solvent environment, and ionic liquids (ILs) emerge as a versatile solvent for activation or stabilization of enzymes. Herein, effects of cholinium-based ILs formulated with carboxylic acids, inorganic acid, and amino acids as anionic species, on the catalytic activity of laccase from Trametes versicolor were investigated by experimental and computational approaches. Experimental results showed that laccase activity was enhanced by 21.39 % in 0.5 M cholinium dihydrogen citrate ([Cho][DHC]), in relation to the laccase activity in phosphate buffer medium. However, cholinium aminoate ILs negatively affected laccase activity, as evidenced by the partial deactivation of laccase in both cholinium glycinate and cholinium phenylalaninate, at concentrations of 0.1 M and 0.5 M, respectively. Molecular dynamics studies revealed that the enhancement of laccase activity in [Cho][DHC] might be attributed to the highly stabilized and compact structure of laccase, facilitating a better internal electron transfer during the laccase-substrate interactions. Enhanced catalytic performance of laccase in [Cho][DHC] was postulated to be driven by the high accumulation level of dihydrogen citrate anions around laccase's surface. [Cho][DHC] holds great promise as a cosolvent in laccase-catalyzed biochemical reactions.


Asunto(s)
Líquidos Iónicos , Lacasa , Simulación de Dinámica Molecular , Lacasa/química , Lacasa/metabolismo , Líquidos Iónicos/química , Trametes/enzimología , Solventes/química , Colina/química , Polyporaceae
8.
Food Res Int ; 194: 114869, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232508

RESUMEN

Genistein could interact with starch to slow starch digestion by forming starch-genistein complexes. However, genistein had low solubility in water, which hindered the interaction with starch and therefore the formation of the complexes. This study presented a pathway to promote the formation of starch-genistein complexes using an antisolvent method in two steps: (i) adding ethanol to the solution containing starch and genistein to increase genistein solubility, and (ii) evaporating ethanol from the solution to promote genistein interaction with starch. The complexes prepared using this antisolvent method had higher crystallinity (9.45 %), complex index (18.17 %), and higher content of resistant starch (RS) (19.04 %) compared to samples prepared in pure water or ethanol-containing aqueous solution without ethanol evaporation treatment (these samples showed crystallinity of 6.97 %-8.00 %, complex index of 9.09 %-11.4 2%, and RS of 4.45 %-14.38 %). Molecular dynamic simulation results confirmed that the changes in solution polarity significantly determined the formation of starch-genistein complexes. Findings offered a feasible pathway to efficiently promote starch interaction with genistein and in turn mitigate starch digestibility.


Asunto(s)
Digestión , Genisteína , Solubilidad , Almidón , Almidón/química , Genisteína/química , Etanol/química , Solventes/química , Simulación de Dinámica Molecular
9.
Molecules ; 29(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203009

RESUMEN

An ultrasound-assisted dispersive liquid-liquid microextraction by solidifying floating organic droplets, coupled to a form of temperature-programmed gas chromatography flame ionization detection, has been developed for the extraction and determination of thymol and carvacrol. This method utilizes undecanol as the extraction solvent, offering advantages such as facilitating phase transfer through solidification and enhancing solvent-focusing efficiency. The optimal gas chromatography conditions include a sample injection volume of 0.2 µL, a split ratio of 1:10, and a flow rate of 0.7 mL min-1. The extraction conditions entail an extraction solvent volume of 20 µL, a disperser solvent (acetone) volume of 500 µL, pH 7.0, 7.0% NaCl (3.5 M), a sample volume of 5.0 mL, an ultrasound duration of 10 min, and a centrifuge time of 7.5 min (800 rpm). These conditions enable the achievement of a high and reasonable linear range of 3.5 to 70. 0 µg mL-1 for both thymol and carvacrol. The detection limits are found to be 0.95 and 0.89 µg mL-1, respectively, for thymol and carvacrol. The obtained relative standard deviations, 2.7% for thymol and 2.6% for carvacrol, demonstrate acceptable precision for the purpose of quantitative analysis.


Asunto(s)
Cimenos , Microextracción en Fase Líquida , Solventes , Timol , Timol/análisis , Timol/química , Cimenos/química , Cimenos/análisis , Microextracción en Fase Líquida/métodos , Cromatografía de Gases/métodos , Solventes/química , Límite de Detección
10.
Biosens Bioelectron ; 264: 116660, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142230

RESUMEN

Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.


Asunto(s)
Técnicas Biosensibles , Cadmio , Cobre , Nanopartículas del Metal , Níquel , Solventes , Níquel/química , Cobre/química , Técnicas Biosensibles/métodos , Cadmio/química , Cadmio/análisis , Nanopartículas del Metal/química , Solventes/química , Cisteína/química , Cisteína/análisis , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Metales Pesados/química , Colorantes Fluorescentes/química , Límite de Detección , Nanoestructuras/química
11.
Int J Pharm ; 663: 124553, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39103063

RESUMEN

In chronic wound treatment, the debridement of devitalized tissue and the eradication of the biofilm must balance aggressiveness with care to protect regenerating tissues. In this study, urea, a potent chaotropic molecule, was modulated through the formation of a Natural Deep Eutectic Solvent (NADES) with betaine to develop a new debriding material (BU) suitable for application into injured dermal tissues. To evaluate BU's debriding capacity, along with its antibiofilm effect and biocompatibility, pre-clinical to clinical methods were employed. In vitro determinations using artificial and clinical slough samples indicate that BU has a high debriding capacity. Additionally, BU's de-structuring effects lead to a strong antibiofilm capability, demonstrated by a reduced bacterial load compared to the antiseptic PHMB-Betaine or medical honey, evaluated in artificial slough and ex vivo human skin. Furthermore, BU's efficacy was evaluated in a murine model of diabetic wound, demonstrating significant effects on debriding and antibiofilm capacity, similar to those observed in PHMB-Betaine and medical honey-treated animals. Finally, BU was clinically evaluated in leg ulcers, showing superiority in reduction of bacterial load and wound area compared to honey, with no adverse effects. Thus, BU represents a simple and non-biocidal option that could contributes to chronic wound care.


Asunto(s)
Betaína , Biopelículas , Desbridamiento , Solventes , Cicatrización de Heridas , Biopelículas/efectos de los fármacos , Animales , Betaína/farmacología , Betaína/química , Humanos , Solventes/química , Cicatrización de Heridas/efectos de los fármacos , Desbridamiento/métodos , Ratones , Masculino , Femenino , Urea , Miel , Piel/microbiología , Piel/efectos de los fármacos , Enfermedad Crónica , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Persona de Mediana Edad , Diabetes Mellitus Experimental/tratamiento farmacológico , Anciano
12.
Int J Pharm ; 663: 124574, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39134290

RESUMEN

Microfluidic technology has not been extensively utilized in nanocrystals manufacture, although it has been used in the production of liposomes and LNPs. This is mainly due to concerns including blockage of narrow pipes and corrosion of organic solvents on chips. In this study, a detachable stainless steel microfluidic chip with split-and-recombine (SAR) structure was engraved and used to prepare curcumin nanocrystal suspensions by a microfluidic-antisolvent precipitation method. A simulation study of the mixing activities of three chip structures was conducted by COMSOL Multiphysics software. Then the curcumin nanocrystals preparation was optimized by Box-Behnken design to screen different stabilizers and solvents. Two curcumin nanocrystals formulations with an average particle size of 59.29 nm and 168.40 nm were obtained with PDIs of 0.131 and 0.058, respectively. Compared to curcumin powder, the formulation showed an increase in dissolution rate in 0.1 M HCL while pharmacokinetic study indicated that Cmax was increased by 4.47 and 3.14 times and AUC0-∞ were 4.26 and 3.14 times greater. No clogging or deformation of the chip was observed after long usage. The results demonstrate that the stainless steel microfluidic chips with SAR structure have excellent robustness and controllability. It has the potential to be applied in GMP manufacturing of nanocrystals.


Asunto(s)
Curcumina , Nanopartículas , Tamaño de la Partícula , Acero Inoxidable , Curcumina/química , Curcumina/administración & dosificación , Curcumina/farmacocinética , Acero Inoxidable/química , Nanopartículas/química , Animales , Solventes/química , Masculino , Composición de Medicamentos/métodos , Microfluídica/métodos , Dispositivos Laboratorio en un Chip , Solubilidad , Liberación de Fármacos , Técnicas Analíticas Microfluídicas
13.
J Pharm Biomed Anal ; 251: 116427, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154579

RESUMEN

In this work, multiple extraction thermal desorption (METD), as a sample introduction method for GC, was developed. This technique was used for the determination of residual solvents (RS) in modified cellulose, because it is practically impossible to dissolve or distribute it uniformly in water and common organic solvents. Moreover, METD facilitates the optimization of the desorption time and it is more sensitive to quantify trace level volatiles in insoluble material, compared to direct dynamic desorption (DDD). In addition, METD provides diagnostic information about the sample-sorbent interaction. Three solvents (methanol, ethanol and tert-butanol) were determined in two types of modified cellulose (dialdehyde cellulose (DAC) and DAC-ethylenediamine (DAC-EDA)). It was shown that good linearity over a wide concentration range was achieved. The limits of detection (LOD) and limits of quantification (LOQ) for the different solvents ranged from 0.1 to 0.3 µg and from 0.3 to 0.9 µg per tube, respectively. Accuracy of the METD method was verified by using an alternative method based on the decomposition of the modified celluloses by Trichoderma reesei cellulase, followed by headspace-trap-GC (HS-trap-GC). The results obtained from the two validated methods were found to be similar (relative deviation < 17.0 %). However, the developed METD-GC method is preferable for the analysis of RS in modified cellulose since it does not require sample pretreatment and possesses higher sensitivity.


Asunto(s)
Celulosa , Límite de Detección , Solventes , Solventes/química , Celulosa/química , Cromatografía de Gases/métodos , Etanol/química , Etanol/análisis , Metanol/química , Reproducibilidad de los Resultados , Etilenodiaminas/química , Etilenodiaminas/análisis , Alcohol terc-Butílico/análisis , Alcohol terc-Butílico/química
14.
Food Chem ; 461: 140918, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181045

RESUMEN

Although formononetin has a considerable biological activity, its therapeutic use is limited by its low solubility. Formononetin was dissolved in ethanol, methanol, N, N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) in this investigation, the antisolvent precipitation procedure with the assistance of an external ultrasonic probe was used to manufacture the formononetin nano-particles. The ideal parameters for response surface BBD optimization are as follows: feed volume flow rate of 6 mL/min; ultrasonic power of 860 W; and liquid-liquid ratio of 1:12.5. The formononetin nano-particles have a smaller particle diameter than raw sample; the lowest size can be as small as (329 ± 1.99) nm, which is 45 times smaller than raw. An in vitro digestion test using a solution that simulated intestinal solution revealed that the release rate of the nano-particle was 1.75 times than that of the raw formononetin. The formononetin nano-particles generated by the aforementioned four solvents have the following order of diameter: ethanol > methanol > DMF > DMSO. This study provided a technical reference for the functional food components in deep processing.


Asunto(s)
Isoflavonas , Nanopartículas , Tamaño de la Partícula , Solventes , Isoflavonas/química , Nanopartículas/química , Solventes/química , Solubilidad , Precipitación Química , Ultrasonido
15.
Food Chem ; 460(Pt 3): 140689, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116767

RESUMEN

Residues of pesticides in milk may pose a threat to human health. This study aimed to develop a liquid-phase microextraction (LPME) method using hexafluoroisopropanol (HFIP)-based supramolecular solvent (SUPRAS) for the simultaneous extraction and purification of four pesticides (boscalid, novaluron, cypermethrin and bifenthrin) in milk. Pesticides were extracted using SUPRAS prepared with nonanol and HFIP, and the extraction efficiency was analyzed. Results showed satisfactory recoveries ranging from 80.8%-111.0%, with relative standard deviations (RSDs) of <6.4%. Additionally, satisfactory linearities were observed, with correlation coefficients >0.9952. The limits of quantification (LOQs) were in the range of 1.8 µg·L-1-14.0 µg·L-1. The established method demonstrated high extraction efficiency with a short operation time (15 mins) and low solvent consumption (2.7 mL). The HFIP-based SUPRAS LPME method offers a convenient and efficient approach for the extraction of pesticides from milk, presenting a promising alternative to conventional techniques.


Asunto(s)
Contaminación de Alimentos , Microextracción en Fase Líquida , Leche , Solventes , Microextracción en Fase Líquida/métodos , Leche/química , Animales , Solventes/química , Contaminación de Alimentos/análisis , Residuos de Plaguicidas/aislamiento & purificación , Residuos de Plaguicidas/química , Residuos de Plaguicidas/análisis , Hexanoles/química , Bovinos , Plaguicidas/aislamiento & purificación , Plaguicidas/química , Plaguicidas/análisis , Hidrocarburos Fluorados , Propanoles
16.
Int J Pharm ; 664: 124613, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39179010

RESUMEN

In this work, the solid-liquid equilibrium (SLE) curve for ten active pharmaceutical ingredients (APIs) with the polymer polyvinylpyrrolidone (PVP) K12 was purely predicted using the Conductor-like Screening Model for Real Solvents (COSMO-RS). In particular, two COSMO-RS-based strategies were followed (i.e., a traditional approach and an expedited approach), and their performances were compared. The veracity of the predicted SLE curves was assessed via a comparison with their respective SLE dataset that was obtained using the step-wise dissolution (S-WD) method. Overall, the COSMO-RS-based API-PVP K12 SLE curves were in satisfactory agreement with the S-WD-based data points. Of the twenty predicted SLE curves, only two were found to be in strong disagreement with the corresponding experimental values (both modeled using the expedited approach). Hence, it was recommended to use the traditional approach when predicting the API-polymer SLE curve. At the present moment, COSMO-RS may be an effective computational tool for the expeditious screening of API-polymer compatibility, particularly in the case of promising novel APIs, for which experimental datasets are likely limited or non-existent.


Asunto(s)
Povidona , Povidona/química , Preparaciones Farmacéuticas/química , Polímeros/química , Solventes/química , Solubilidad , Liberación de Fármacos , Química Farmacéutica/métodos
17.
Biomed Mater ; 19(5)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094613

RESUMEN

The design of three-dimensional (3D) scaffolds should focus on creating highly porous, 3D structures with an interconnected pore network that supports cell growth. The scaffold's pore interconnectivity is directly linked to vascularization, cell seeding, guided cell migration, and transportation of nutrients and metabolic waste. In this study, different types of food flavors including monosodium glutamate, sugar, and sodium chloride were used as the porogens along with PCL/PVP blend polymer for solvent casting/particulate leaching method. The morphology, porosity, interconnectivity, chemical composition, water absorption, and mechanical properties of the fabricated scaffolds are carefully characterized. The scaffolds are biocompatible in bothin vitroandin vivoexperiments and do not trigger any inflammatory response while enhancing new bone formation and vascularization in rabbit calvaria critical-sized defects. The new bone merges and becomes denser along with the experiment timeline. The results indicate that the 3D PCL/PVP scaffolds, using monosodium glutamate as porogen, exhibited suitable biological performance and held promise for bone tissue engineering in oral and maxillofacial surgery.


Asunto(s)
Materiales Biocompatibles , Glutamato de Sodio , Solventes , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Conejos , Ingeniería de Tejidos/métodos , Porosidad , Solventes/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Ensayo de Materiales , Cráneo/efectos de los fármacos , Polivinilos/química , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Huesos/metabolismo
18.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125075

RESUMEN

Banana peels, comprising about 35% of the fruit's weight, are often discarded, posing environmental and economic issues. This research focuses on recycling banana peel waste by optimizing advanced extraction techniques, specifically microwave-assisted (MAE) and ultrasound-assisted extraction (UAE), for the isolation of phenolic compounds. A choline chloride-based deep eutectic solvent (DES) with glycerol in a 1:3 ratio with a water content of 30% (w/w) was compared to 30% ethanol. Parameters, including sample-to-solvent ratio (SSR), extraction time, and temperature for MAE or amplitude for UAE, were varied. Extracts were analyzed for hydroxycinnamic acid (HCA) and flavonoid content, and antioxidant activity using FRAP and ABTS assays. DES outperformed ethanol, with HCA content ranging from 180.80 to 765.92 mg/100 g and flavonoid content from 96.70 to 531.08 mg/100 g, accompanied by higher antioxidant activity. Optimal MAE conditions with DES were an SSR of 1:50, a temperature of 60 °C, and a time of 10 min, whereas an SSR of 1:60, time of 5 min, and 75% amplitude were optimal for UAE. The polyphenolic profile of optimized extracts comprised 19 individual compounds belonging to the class of flavonols, flavan-3-ols, and phenolic acids. This study concluded that DESs, with their superior extraction efficiency and environmental benefits, are promising solvents for the extraction of high-value bioactive compounds from banana peels and offer significant potential for the food and pharmaceutical industries.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Musa , Fenoles , Extractos Vegetales , Musa/química , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Flavonoides/química , Flavonoides/aislamiento & purificación , Frutas/química , Microondas , Tecnología Química Verde/métodos , Solventes/química
19.
J Chromatogr A ; 1732: 465203, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39096781

RESUMEN

The retention of three peptides was studied under analytical and overloaded conditions at different concentrations of trifluoroacetic acid (TFA) and water added to the co-solvent methanol (MeOH). Four columns with different stationary phase properties, i.e., silica, diol, 2-ethylpyridine and cyanopropyl (CN) columns, were evaluated in this investigation. The overall aim was to get a deeper understanding on how column chemistry as well as water and TFA in the co-solvent affect the analytical and overloaded elution profiles using multivariate design of experiments and adsorption measurements of co-solvent components. Multivariate experimental design modeling indicated that water had on average around five times higher effect on the retention than the addition of TFA. The results also showed that the retention increases with the addition of TFA and water to the co-solvent on all columns except the CN column, on which the retention decreased. When examining the effect of adding water to the co-solvent, evidence of a hydrophilic interaction liquid chromatography (HILIC)-like retention mechanism was found on the three other columns with more polar stationary phases. However, on the CN column water acted as an additive, decreasing the retention due to competition with the peptide for available adsorption surface. Adsorption isotherm measurements of the polar solvent MeOH showed that MeOH adsorbs much weaker on the CN column than on the other columns. Addition of TFA and water to the co-solvent substantially sharpened the elution profiles under both overloaded and analytical conditions. Adding a small amount of TFA (from 0 % to 0.05 %) to the co-solvent substantially improved the peak shape of the elution profiles, while further addition (from 0.05 % to 0.15 %) had only a minor effect on the elution profile shape. The reduced retention on the CN column could not be explained by TFA adsorption, which was very weak on all studied columns (retention factor, 0.05-0.15). One could therefore speculate that the ion-pairing complex formed between the peptide and TFA in the mobile phase, reduce the retention due to its reduced polarity. On the other columns displaying HILIC-like properties, the TFA probably just decreased the pH of the mobile phase, thereby promoting the partitioning of the peptide into the water-rich layer. Finally, peak deformation due to diluent-eluent mismatch was observed under overloaded conditions. This was most severe in the cases where MeOH adsorption to the stationary phase was strong and the peptides were only mildly retained. Adding 1,4-dioxan to the diluent resolved this issue.


Asunto(s)
Cromatografía con Fluido Supercrítico , Interacciones Hidrofóbicas e Hidrofílicas , Metanol , Péptidos , Ácido Trifluoroacético , Agua , Péptidos/química , Péptidos/aislamiento & purificación , Adsorción , Agua/química , Cromatografía con Fluido Supercrítico/métodos , Ácido Trifluoroacético/química , Metanol/química , Solventes/química
20.
Food Res Int ; 191: 114649, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059933

RESUMEN

Clear emulsions are used as flavor carriers by the beverage industry because of their favorable optical properties. A transparent microemulsion with small droplets requires a high concentration of surfactants, and is often non-dilutable, posing a significant challenge to their application in the food industry. The formation of dilutable microemulsions by modulating the compatibility of oil composition and co-solvents was studied. While single-fold lemon oil exhibited poor loading capacity overall, no precipitation occurred due to the stronger interaction between monoterpenes and sucrose monopalmitate (SMP). Conversely, emulsification of five-fold lemon oil with 20 % ethanol demonstrated a higher loading capacity and a stronger dilution stability than other lemon oils. This is likely due to the balanced composition of surface-active monoterpenes and other components in five-fold lemon oil which facilitated the effective use of micellar space and aided in the retention of both surfactants and co-solvents post-dilution. The emulsification of higher-folded lemon oil, however, was favored by the use of propylene glycol as a surfactant exhibiting stronger dilution stability than ethanol, though it required twice as much co-solvent. The high concentration of surface-active monoterpene in the lower-folded lemon oils competes with propylene glycol for interfacial incorporation. This study demonstrated that co-solvents and oil composition play interactive roles in producing dilutable optically clear emulsions, and it provides a blueprint for the food industry to design colloidal systems using a minimum of surfactants.


Asunto(s)
Emulsiones , Aceites de Plantas , Solventes , Tensoactivos , Emulsiones/química , Aceites de Plantas/química , Solventes/química , Tensoactivos/química , Tamaño de la Partícula , Citrus/química , Etanol/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA