Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.513
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732120

RESUMEN

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Cuerpo Estriado , Modelos Animales de Enfermedad , Enfermedad de Parkinson , Receptor de Adenosina A2A , Animales , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Ratas , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Receptor de Adenosina A2A/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Triazoles/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley
2.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703793

RESUMEN

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Asunto(s)
Administración Intranasal , Cuerpo Estriado , Dopamina , Neuronas Dopaminérgicas , Kisspeptinas , Oxidopamina , Trastornos Parkinsonianos , Ratas Sprague-Dawley , Sustancia Negra , Animales , Masculino , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Dopamina/metabolismo , Oxidopamina/farmacología , Ratas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Kisspeptinas/administración & dosificación , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Modelos Animales de Enfermedad , Actividad Motora/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
3.
J Parkinsons Dis ; 14(4): 693-711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728204

RESUMEN

Background: Parkinson's disease (PD) is characterized by alpha-synuclein (α-Syn) pathology, neurodegeneration and neuroinflammation. Human leukocyte antigen (HLA) variants associated with PD and α-Syn specific CD4+ T lymphocytes in PD patients highlight the importance of antigen presentation in PD etiology. The class II transactivator (CIITA) regulates major histocompatibility complex class II (MHCII) expression. Reduced Ciita levels significantly increase α-Syn pathology, nigrostriatal neurodegeneration and behavioral deficits in α-Syn-induced rat PD models. Objective: Characterize immune profiles associated with enhanced PD-like pathology observed in rats expressing lower Ciita levels (DA.VRA4) compared to the background strain (DA). Methods: To model PD, we combined rAAV-mediated α-Syn overexpression in the substantia nigra with striatal injection of α-Syn preformed fibrils. Immune profiles in brain and blood were analyzed by flow cytometry and multiplexed ELISA in naïve rats, 4- and 8 weeks post rAAV injection. Results: Flow cytometry showed Ciita-dependent regulation of MHCII on microglia, brain macrophages and circulating myeloid cells. The MHCII-dependent microglial response was highest at 4 weeks post rAAV injection, whereas the MHCII levels in circulating myeloid cells was highest at 8 weeks. There was no major infiltration of macrophages or T lymphocytes into the CNS in response to α-Syn and only subtle Ciita- and/or α-Syn-dependent changes in the T lymphocyte compartment. Lower Ciita levels were consistently associated with higher TNF levels in serum. Conclusions: Ciita regulates susceptibility to PD-like pathology through minor but detectable changes in resident and peripheral immune cells and TNF levels, indicating that mild immunomodulatory therapies could have therapeutic effects in PD.


Parkinson's disease is characterized by loss of nerve cells. There is also abnormal aggregation of a protein called alpha-synuclein and an ongoing inflammatory response. Findings that immune cells in the blood of individuals with Parkinson's disease react against the alpha-synuclein protein and that genes important for the immune system affect the risk of developing Parkinson's disease indicate that immune responses are important in Parkinson's disease. We have previously found that a low expression of certain immune molecules worsens disease progression in a rat model of Parkinson's disease. The aim of this study was to identify changes in the immune system in rats that are associated with disease severity, to identify mechanisms that could be targeted to treat Parkinson's disease. To model Parkinson's disease, we injected a modified virus to produce large amounts of alpha-synuclein combined with an injection of aggregated alpha-synuclein proteins in the rat brain. The model mimics several features of Parkinson's disease including nerve cell death, problems with movement, accumulation of alpha-synuclein in the brain, and an immune response. We observed that the immune system in the brain and blood responded to the model but that differences were small compared to controls. Our results suggest that small changes in the immune system can have a large effect on disease progression and that therapies targeting the immune system are worth exploring to find better treatment for Parkinson's disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson , Transactivadores , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Ratas , Transactivadores/genética , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Proteínas Nucleares/metabolismo , Sustancia Negra/patología , Sustancia Negra/metabolismo , Sustancia Negra/inmunología , Masculino , Dependovirus , Microglía/inmunología , Microglía/metabolismo , Microglía/patología
4.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684731

RESUMEN

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Asunto(s)
ADN Mitocondrial , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Masculino , ADN Mitocondrial/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/genética , Anciano , Sustancia Negra/metabolismo , Sustancia Negra/patología , Persona de Mediana Edad , Fenotipo , Neuronas/metabolismo
5.
Zhen Ci Yan Jiu ; 49(4): 384-390, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649206

RESUMEN

OBJECTIVES: To observe the effects on tyrosine hydroxylase (TH), α-synaptic nucleoprotein (α-syn), sirtuin 3 (Sirt3), NOD-like receptor 3 (NLRP3) and gasdermin-D (GSDMD) in the substantia nigra of midbrain after electroacupuncture (EA) at "Fengfu"(GV16), "Taichong" (LR3) and "Zusanli" (ST36) in rats of Parkinson's disease (PD), so as to explore the mechanism of EA in treatment of PD. METHODS: SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The PD model was established by injecting rotenone into the neck and back, lasting 28 days. In the EA group, EA was applied to GV16, LR3 and ST36, 30 min each time, once daily, consecutively for 28 days. The open-field test was adopted to detect the total distance of autonomic movement of rats, and the pole climbing test was used to detect the body coordination ability of rats. In the substania nigra of midbrain, the positive expression of TH was determined using immunohistochemistry, the mRNA expression levels of α - syn, Sirt3, NLRP3 and GSDMD were detected by quantitative real-time fluorescence PCR, and the protein expression levels of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and cysteinyl aspartate specific proteinase (Caspase)-1 were detected by Western blot. RESULTS: Compared with the control group, the total distance of autonomous movement was decreased (P<0.01) in the model group, and the score of pole climbing experiment was increased (P<0.01);in the midbrain substantia nigra the positive expression of TH was decreased (P<0.01);the mRNA expression level of Sirt3 was decreased (P<0.01), and those of α-syn, NLRP3 and GSDMD were increased (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 were increased (P<0.01). When compared with the model group, the total distance of autonomous movement in open field experiment was increased (P<0.01) in the EA group and the score of pole climbing experiment was lower (P<0.05);in the midbrain substantia nigra the positive expression of TH was increased (P<0.01);the mRNA expression level of Sirt3 in the midbrain substantia nigra was increased (P<0.01), and those of α-syn, NLRP3 and GSDMD were reduced (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 decreased (P<0.01, P<0.05). CONCLUSIONS: EA at "GV16" "LR3" and "ST36" can repair the neuronal injury, clear the abnormal accumulation of α-syn in the substania nigra of midbrain, and ameliorate mitochondrial damage in PD rats, which may be obtained by regulating Sirt3/NLRP3/GSDMD signaling pathway, so as to delay the occurrence and development of Parkinson's disease.


Asunto(s)
Electroacupuntura , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad de Parkinson , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 3 , Sirtuinas , Sustancia Negra , Animales , Ratas , Puntos de Acupuntura , Mesencéfalo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/genética , Sirtuina 3/metabolismo , Sirtuina 3/genética , Sustancia Negra/metabolismo
6.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627469

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Asunto(s)
Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial , Macrófagos , Microglía , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Macrófagos/metabolismo , Microglía/metabolismo , Masculino , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/metabolismo , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Exosomas/metabolismo , Sustancia Negra/metabolismo
7.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599494

RESUMEN

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Asunto(s)
Potenciales de Acción , Neuronas Dopaminérgicas , Exenatida , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Sustancia Negra , Animales , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Exenatida/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Ratones , Ponzoñas/farmacología , Péptidos/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Fragmentos de Péptidos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
8.
Exp Neurol ; 377: 114780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649091

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3ß/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.


Asunto(s)
Ratones Endogámicos C57BL , Neuroglía , Canales Catiónicos TRPM , Tirfostinos , Animales , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Ratones , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Tirfostinos/farmacología , Tirfostinos/uso terapéutico , Progresión de la Enfermedad , Oxidopamina/toxicidad , Modelos Animales de Enfermedad , Degeneración Nerviosa/patología , Degeneración Nerviosa/tratamiento farmacológico , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/prevención & control , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico
9.
Brain Res ; 1834: 148893, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554797

RESUMEN

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCßII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.


Asunto(s)
Neuronas Dopaminérgicas , Receptores ErbB , Lapatinib , Trastornos Parkinsonianos , Receptores de Dopamina D3 , Rotenona , Animales , Masculino , Ratas , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Lapatinib/farmacología , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
10.
Nat Hum Behav ; 8(4): 718-728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409356

RESUMEN

Dopamine and serotonin are hypothesized to guide social behaviours. In humans, however, we have not yet been able to study neuromodulator dynamics as social interaction unfolds. Here, we obtained subsecond estimates of dopamine and serotonin from human substantia nigra pars reticulata during the ultimatum game. Participants, who were patients with Parkinson's disease undergoing awake brain surgery, had to accept or reject monetary offers of varying fairness from human and computer players. They rejected more offers in the human than the computer condition, an effect of social context associated with higher overall levels of dopamine but not serotonin. Regardless of the social context, relative changes in dopamine tracked trial-by-trial changes in offer value-akin to reward prediction errors-whereas serotonin tracked the current offer value. These results show that dopamine and serotonin fluctuations in one of the basal ganglia's main output structures reflect distinct social context and value signals.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Serotonina , Sustancia Negra , Humanos , Serotonina/metabolismo , Dopamina/metabolismo , Sustancia Negra/metabolismo , Masculino , Femenino , Enfermedad de Parkinson/metabolismo , Persona de Mediana Edad , Anciano , Conducta Social , Recompensa
11.
Eur Rev Med Pharmacol Sci ; 28(3): 899-906, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375696

RESUMEN

OBJECTIVE: The pathogenesis of Parkinson's disease (PD) is associated with abnormal iron accumulation. Magnetic resonance imaging (MRI) studies have shown that patients with Parkinson's disease have an increased amount of iron in their substantia nigra (SN). We have undertaken a meta-analysis of studies using MRI in PD, to explore the potential role of MRI in diagnosing PD using abnormal iron deposition in SN as a candidate biomarker. MATERIALS AND METHODS: Searches of PubMed, Embase, and Medline databases revealed 16 studies that compared PD patients and healthy controls (HC). A sensitivity analysis and subgroup analysis were performed to evaluate the reliability of our results. Estimates were pooled by the fixed-effects model. As an expression of I2, we computed the proportion of variation due to heterogeneity. RESULTS: We included 16 studies with sample sizes of 435 PD and 355 HC in our meta-analysis. Results showed that SN iron deposition was significantly elevated (p<0.00001) in patients with PD compared to HC ones (SMD=0.72, 95% confidence interval 0.57 to 0.87, p<0.00001). CONCLUSIONS: Our findings, based on a homogeneous group-level analysis, suggest that MRI-based SN iron deposition could be used to distinguish PD from HC. For a more rigorous investigation of SN iron deposition in PD, larger cohort studies are needed.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Reproducibilidad de los Resultados , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/metabolismo , Imagen por Resonancia Magnética/métodos , Hierro/metabolismo
12.
PLoS One ; 19(2): e0296297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38349932

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases worldwide. Currently applied therapeutic protocols are limited to improve the motor functions of patients. Therefore, seeking alternative regimes with better therapeutic impact is crucial. This study aims to validate the therapeutic impact of mesenchymal stem cell injection using two delivery methods, intracranial administration and intravenous administration, on rotenone (ROT)-induced PD model in rats. Our work included behavioral, biochemical, histological, and molecular investigations. Open field test (OFT) and rotarod tests were applied. Important oxidative stress, antioxidant and proinflammatory markers were monitored. Substantia Nigra and Striatum tissues were examined histologically and the molecular expression of DOPA decarboxylase, Tyrosine hydroxylase, and α-synuclein in neurons in these tissues were investigated. Our results showed that MSC grafting improved motor and memory impairments and oxidative stress status that were observed after ROT administration. Additionally, BM-MSCs application restored SOD and CAT activities and the levels of DA, L-Dopa, IL6, IL1ß, and TNFα. Moreover, MSC grafting overwhelmed the pathological changes induced by ROT and normalized the expression of Tyrosine hydroxylase, DOPA decarboxylase, and α-synuclein towards the control values in the Nigral and Striatal tissues of male rats. Conclusively, both administration routes improved motor function, protection of the nigrostriatal system, and improved striatal dopamine release. The observed beneficial effect of applying MSCs suggests potential benefits in clinical applications. No significant differences in the outcomes of the treatment would favor a certain way of MSC application over the other. However, the intravenous delivery method seems to be safer and more feasible compared to the intrastriatal method.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratas , Masculino , Animales , alfa-Sinucleína/metabolismo , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Rotenona/farmacología , Dopa-Decarboxilasa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Administración Intravenosa , Modelos Animales de Enfermedad
13.
Exp Neurol ; 372: 114614, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38007207

RESUMEN

Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD. There has been increased attention on mitochondrial iron dyshomeostasis, iron-induced mitochondrial dysfunction and ferroptosis in PD. Therefore, this review begins with a brief introduction to describe cellular iron metabolism and the dysregulation of iron metabolism in PD. Then we provide an update on how iron is delivered to mitochondria and induces the damage of dopaminergic neurons in PD. In addition, we also summarize new research progress on iron-dependent ferroptosis in PD and mitochondria-localized proteins involved in ferroptosis. This will provide new insight into potential therapeutic strategies targeting mitochondrial iron dysfunction.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo
14.
J Neural Transm (Vienna) ; 131(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37851107

RESUMEN

Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.


Asunto(s)
Intoxicación por MPTP , Neuroblastoma , Ratones , Humanos , Animales , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Dopamina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
15.
Acta Pharmacol Sin ; 45(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37674042

RESUMEN

Cell senescence has been implicated in the pathology of Parkinson's disease (PD). Both abnormal α-synuclein aggregation and iron deposition are suggested to be the triggers, facilitators, and aggravators during the development of PD. In this study, we investigated the involvement of α-synuclein and iron in the process of cell senescence in a mouse model of PD. In order to overexpress α-syn-A53T in the substantia nigra pars compacta (SNpc), human α-syn-A53T was microinjected into both sides of the SNpc in mice. We found that overexpression of α-syn-A53T for one week induced significant pro-inflammatory senescence-associated secretory phenotype (SASP), increased cell senescence-related proteins (ß-gal, p16, p21, H2A.X and γ-H2A.X), mitochondrial dysfunction accompanied by dysregulation of iron-related proteins (L-ferritin, H-ferritin, DMT1, IRP1 and IRP2) in the SNpc. In contrast, significant loss of nigral dopaminergic neurons and motor dysfunction were only observed after overexpression of α-syn-A53T for 4 weeks. In PC12 cells stably overexpressing α-syn-A53T, iron overload (ferric ammonium citrate, FAC, 100 µM) not only increased the level of reactive oxygen species (ROS), p16 and p21, but also exacerbated the processes of oxidative stress and cell senescence signalling induced by α-syn-A53T overexpression. Interestingly, reducing the iron level with deferoxamine (DFO) or knockdown of transferrin receptor 1 (TfR1) significantly improved both the phenotypes and dysregulated proteins of cell senescence induced by α-syn-A53T overexpression. All these evidence highlights the toxic interaction between iron and α-synuclein inducing cell senescence, which precedes nigral dopaminergic neuronal loss in PD. Further investigation on cell senescence may yield new therapeutic agents for the prevention or treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Ratas , Ratones , Animales , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hierro/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología , Dopamina/metabolismo , Senescencia Celular , Modelos Animales de Enfermedad
16.
Metab Brain Dis ; 38(8): 2615-2625, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921949

RESUMEN

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used due to its specific and reproducible neurotoxic effect on the nigrostriatal system, being considered a convenient model of dopaminergic neurodegeneration to study interventions therapeutics. The purple pitanga (Eugenia uniflora) is a polyphenol-rich fruit with antioxidant and antidepressant properties, among others. Therefore, this study investigated the effect of purple pitanga extract (PPE) on acute early oxidative stress induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Male Wistar rats were pre-treated orally with PPE (1000 mg/kg) or vehicle. After 24 h, MPTP (0.1 mg/10µL/nostril) or vehicle was administered bilaterally into the animal's nostrils, and 6 h later, the olfactory bulb (OB), striatum (ST), and substantia nigra (SN) were collected to evaluate the oxidative stress parameters. Our findings revealed that OB and SN were the most affected areas after 6 h of MPTP infusion; an early increase in reactive oxygen species (ROS) levels was observed, while pretreatment with a single dose of PPE prevented this increment. No differences in thiobarbituric acid reactive species (TBARS) and 3-nitrotyrosine (3-NT) formation were observed, although 4-hydroxy-2-nonenal (4-HNE) levels increased, which is the most toxic form of lipid peroxidation, in the MPTP group. The PPE pretreatment could prevent this increase by increasing the NPSH levels previously decreased by MPTP. Furthermore, PPE prevents the Na+/K + ATPase strongly inhibited by MPTP, showing the neuroprotective capacity of the PPE by inhibiting the MPTP-generated oxidation. Thus, we demonstrated for the first time the antioxidant and neuroprotective effects of PPE against the early MPTP neurotoxicity.


Asunto(s)
Eugenia , Fármacos Neuroprotectores , Ratas , Masculino , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Eugenia/metabolismo , Ratas Wistar , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sustancia Negra/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
17.
Plant Foods Hum Nutr ; 78(4): 768-775, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819493

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative disease characterized by motor and non-motor disabilities resulting from neuronal cell death in the substantia nigra and striatum. Microglial activation and oxidative stress are two of the primary mechanisms driving that neuronal death. Here, we evaluated the effects of geranium oil on 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) mouse model for PD, on microglial activation, and oxidative stress. We demonstrate that oral treatment with geranium oil improved motor performance in this model. The therapeutic effects of geranium oil were observed as a significant increase in rotarod latency and distance among the mice treated with geranium oil, as compared to vehicle-treated MPTP mice. Geranium oil also prevented dopaminergic neuron death in the substantia nigra of the treated mice. These therapeutic effects can be partially attributed to the antioxidant and anti-inflammatory properties of geranium oil, which were observed as attenuated accumulation of reactive oxygen species and inhibition of the secretion of proinflammatory cytokines from geranium oil-treated activated microglial cells. A repeated-dose oral toxicity study showed that geranium oil is not toxic to mice. In light of that finding and since geranium oil is defined by the FDA as generally recognized as safe (GRAS), we do not foresee any toxicity problems in the future and suggest that geranium oil may be a safe and effective oral treatment for PD. Since the MPTP model is only one of the preclinical models for PD, further studies are needed to confirm that geranium oil can be used to prevent or treat PD.


Asunto(s)
Geranium , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Muerte Celular , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
18.
Neurobiol Aging ; 132: 175-184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837733

RESUMEN

The anti-inflammatory efficacy of radiation therapy (RT) with single fractions below 1.0 Gy has been demonstrated in Alzheimer's disease mouse models. As neuroinflammation is also a major pathological feature of Parkinson's disease (PD), RT may also be effective in PD treatment. Therefore, this study aimed to investigate the anti-inflammatory effect of low-moderate dose RT (LMDRT, 0.6 Gy/single dose, for 5 days) exposure in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg, intraperitoneally, for 5 consecutive days)-induced PD mouse model. Importantly, LMDRT reduced the levels of glial fibrillary acidic protein and intercellular adhesion molecule-1 (CD54) in the striatum region, which increased following MPTP administration. LMDRT also modulated inflammatory gene expression patterns in the substantia nigra region of the MPTP-treated mice. However, LMDRT had no direct effects on the severe loss of dopaminergic neurons and impaired motor behavior in the rotarod test. These results indicate that LMDRT has anti-inflammatory effects by modulating neuroinflammatory factors, including glial fibrillary acidic protein and intercellular adhesion molecule-1, but showed no behavioral improvements or neuroprotection in the MPTP-induced mouse model of PD.


Asunto(s)
Encéfalo , Proteína Ácida Fibrilar de la Glía , Enfermedad de Parkinson , Animales , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/farmacología , Molécula 1 de Adhesión Intercelular/uso terapéutico , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/radioterapia , Sustancia Negra/metabolismo
19.
Ageing Res Rev ; 91: 102063, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37673132

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.


Asunto(s)
Productos Biológicos , Ferroptosis , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sustancia Negra/metabolismo
20.
Brain ; 146(12): 5000-5014, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769648

RESUMEN

Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Anciano , Sinucleinopatías/patología , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Primates/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA