Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Molecules ; 27(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35056856

RESUMEN

Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Renio/química , Renio/farmacología , Animales , Antibacterianos/uso terapéutico , Antineoplásicos/uso terapéutico , Humanos , Sustancias Luminiscentes/química , Sustancias Luminiscentes/farmacología , Sustancias Luminiscentes/uso terapéutico , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/uso terapéutico , Renio/uso terapéutico
2.
J Am Chem Soc ; 143(36): 14635-14645, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34410692

RESUMEN

Antibodies are recognition molecules that can bind to diverse targets ranging from pathogens to small analytes with high binding affinity and specificity, making them widely employed for sensing and therapy. However, antibodies have limitations of low stability, long production time, short shelf life, and high cost. Here, we report a facile approach for the design of luminescent artificial antibodies with nonbiological polymeric recognition phases for the sensitive detection, rapid identification, and effective inactivation of pathogenic bacteria. Transition-metal dichalcogenide (TMD) nanosheets with a neutral dextran phase at the interfaces selectively recognized S. aureus, whereas the nanosheets bearing a carboxymethylated dextran phase selectively recognized E. coli O157:H7 with high binding affinity. The bacterial binding sites recognized by the artificial antibodies were thoroughly identified by experiments and molecular dynamics simulations, revealing the significance of their multivalent interactions with the bacterial membrane components for selective recognition. The luminescent WS2 artificial antibodies could rapidly detect the bacteria at a single copy from human serum without any purification and amplification. Moreover, the MoSe2 artificial antibodies selectively killed the pathogenic bacteria in the wounds of infected mice under light irradiation, leading to effective wound healing. This work demonstrates the potential of TMD artificial antibodies as an alternative to antibodies for sensing and therapy.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Sustancias Luminiscentes/uso terapéutico , Nanoestructuras/uso terapéutico , Animales , Antibacterianos/química , Antibacterianos/efectos de la radiación , Dextranos/química , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/aislamiento & purificación , Luz , Sustancias Luminiscentes/química , Sustancias Luminiscentes/efectos de la radiación , Ratones , Simulación de Dinámica Molecular , Molibdeno/química , Molibdeno/efectos de la radiación , Molibdeno/uso terapéutico , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Terapia Fototérmica , Compuestos de Selenio/química , Compuestos de Selenio/efectos de la radiación , Compuestos de Selenio/uso terapéutico , Piel/microbiología , Espectrometría Raman , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Sulfuros/química , Sulfuros/efectos de la radiación , Sulfuros/uso terapéutico , Compuestos de Tungsteno/química , Compuestos de Tungsteno/efectos de la radiación , Compuestos de Tungsteno/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos
3.
Adv Mater ; 32(37): e2003382, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32761671

RESUMEN

Inspired by the respective advantages of aggregation-induced emission (AIE)-active photosensitizers and black phosphorus nanomaterials in cancer treatment, the facile construction of novel AIE photosensitizers married to 2D black phosphorus nanosheets and their application for multimodal theranostics are demonstrated. The developed nanomaterial simultaneously possesses distinctive properties and multiple functions including excellent stability, good biocompatibility, intensive fluorescence emission in the NIR region, high-performance reactive oxygen species generation, good photothermal conversion efficiency, outstanding cellular uptake, and effective accumulation at the tumor site. Both in vitro and in vivo evaluation show that the presented nanotheranostic system is an excellent candidate for NIR fluorescence-photothermal dual imaging-guided synergistic photodynamic-photothermal therapies. This study thus not only extends the applications scope of AIE and black phosphorus materials, but also offers useful insights into designing a new generation of cancer theranostic protocol for potential clinical applications.


Asunto(s)
Sustancias Luminiscentes/química , Nanoestructuras/química , Fósforo/química , Nanomedicina Teranóstica , Línea Celular Tumoral , Humanos , Sustancias Luminiscentes/uso terapéutico , Nanoestructuras/uso terapéutico , Fósforo/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión , Especies Reactivas de Oxígeno/metabolismo
4.
Inorg Chem ; 59(14): 10285-10303, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32633531

RESUMEN

The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.


Asunto(s)
Antineoplásicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , Sustancias Luminiscentes/uso terapéutico , Nitrilos/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacocinética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Células HeLa , Humanos , Ligandos , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/farmacocinética , Ratones Endogámicos BALB C , Nitrilos/síntesis química , Nitrilos/farmacocinética , Renio/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Chem Commun (Camb) ; 56(55): 7537-7548, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32573609

RESUMEN

The design of novel agents that specifically target DNA and interrupt its normal biological processes is an attractive goal in drug design. Among the promising metallodrugs, metal-directed self-assembled metallohelices with defined three-dimensional stereochemical structures display unique structure-inherent and unprecedented noncovalent targeting abilities towards DNA, resulting in excellent anticancer or antibiotic activities. A newly burgeoning hotspot is focusing on lighting them up by embedding luminescent metal ions as the vertices. The photoactive metallohelices that combine strong interactions toward DNA targets and efficient 1O2 quantum yield may provide new motivation in diagnostic and photodynamic therapy (PDT) areas. This perspective focuses on research progress on metallohelices as DNA binders and chemotherapeutic agents, and highlights recent advances in fabricating luminescent examples for PDT. The relative assembly strategies are also discussed and compared. Finally, perspectives on the future development of the lit-up metallohelices are presented.


Asunto(s)
Antineoplásicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , ADN/química , Sustancias Luminiscentes/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Humanos , Sustancias Luminiscentes/química , Metales Pesados/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química
6.
ACS Appl Mater Interfaces ; 12(23): 25572-25580, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32412741

RESUMEN

Reactive oxygen species-mediated tumor chemodynamic therapy and photodynamic therapy have captured extensive attention in practical cancer combination therapies. However, the severe treatment conditions and the hypoxic microenvironment of solid tumors significantly limit the efficacy of these therapies. This work demonstrates the design and fabrication of a multifunctional persistent luminescence nanoplatform (PHFI, refers to PLNP-HSA-Fe3+-IR780) for cancer multimodal imaging and effective photoenhanced combination therapy. The near-infrared-emitted persistent luminescence nanoparticles (PLNP) was modified with human serum albumin (HSA) combined with an IR780 probe and Fe3+. The synthesized PHFI possesses high longitudinal relaxivity, obvious photoacoustic contrast signals, and long-lasting persistent luminescence, indicating that PHFI can be used for cancer magnetic resonance imaging, photoacoustic imaging, and persistent luminescence multimodal imaging. PHFI shows intrinsic photoenhanced Fenton-like catalytic activities as well as photodynamic and photothermal effects and thereby can effectively overcome severe treatment conditions for killing tumor cells. It is worth noting that PHFI serving as a rechargeable internal light source for photoenhanced combination therapy was first disclosed. We believe that our work shows the great potential of PHFI for cancer theranostics and will advance the development of PLNP-based nanoplatforms in tumor catalytic therapy.


Asunto(s)
Sustancias Luminiscentes/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Animales , Bencidinas/química , Catálisis/efectos de la radiación , Línea Celular Tumoral , Compuestos Cromogénicos/química , Humanos , Peróxido de Hidrógeno/química , Hipotermia Inducida/métodos , Rayos Infrarrojos , Hierro/química , Sustancias Luminiscentes/química , Sustancias Luminiscentes/efectos de la radiación , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/efectos de la radiación , Fotoquimioterapia/métodos , Medicina de Precisión/métodos , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Humana/química
7.
Chem Asian J ; 15(7): 947-957, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32031734

RESUMEN

Organic room temperature phosphorescence (RTP) materials have drawn increasing attention due to their unique features, especially the long emission lifetime for applications in biomedicine. In this review, we provide an overview of the recent developments of organic RTP materials applied in the biomedicine field. First, we introduce the basic mechanism of phosphorescence and subsequently we present various strategies of modulating the lifetime and efficiency of room temperature organic phosphorescence. Next, we summarize the progress of organic RTP materials in biological applications, including bioimaging, anti-cancer and antibacterial therapies. Finally, we provide an outlook with regard to the challenges and future perspectives in the field.


Asunto(s)
Sustancias Luminiscentes/farmacología , Mediciones Luminiscentes/métodos , Temperatura , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Diagnóstico por Imagen/métodos , Humanos , Luminiscencia , Sustancias Luminiscentes/uso terapéutico
8.
Bioconjug Chem ; 31(2): 340-351, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31751118

RESUMEN

The narrow absorption and emission bands, long fluorescence lifetime, and excellent stability of rare earth nanoparticles (referred to as RE NPs) make them very attractive for multimodal imaging and therapy of cancer. Their narrow absorption requires the careful selection of laser wavelength to achieve the best performance, particularly for RE NPs simultaneously having photothermal and photoluminescent properties (e.g., Nd-based nanoparticles), which has not been investigated. Herein, we prepared a series of different-sized NaNdF4 nanoparticles (referred to as NNF NPs) (i.e., 4.7, 5.9, 12.8, and 15.6 nm) from ultrasmall nanoclusters and investigated their in vitro and in vivo size-dependent photothermal conversion and photoluminescence under irradiation by a 793 nm laser and an 808 nm laser, respectively. We find that all nanoparticles exhibited the better photothermal conversion performance under the irradiation of the 808 nm laser than under the 793 nm laser, of which 12.8 nm NNF NPs showed the best performance, and the temperature of their solution can be quickly increased from 30 °C to around 60 °C within 10 min under the irradiation of the 808 nm laser with a power intensity of 0.75 W/cm2. When we used the 793 nm laser to excite these NNF NPs, we found that all nanoparticles exhibited the stronger photoluminescence in the second near-infrared window (NIR-II) than under the excitation by the 808 nm laser, of which 15.6 nm NNF NPs possessed the strongest NIR-II luminescence. We then modified 12.8 nm NNF NPs with phospholipid carboxyl PEG and functionalized with RGD for actively targeted imaging of cancer. The NaNdF4@PEG@RGD nanoparticles (referred to as NNF-P-R NPs) have good biocompatibility, stability, and excellent targeting capability. The in vivo result show that 12.8 nm NNF NPs exhibited better photothermal conversion performance under the irradiation of the 808 nm laser, and stronger NIR-II fluorescence under irradiation of the 793 nm laser, which are consistent with the in vitro result. This work demonstrates the significance of selection of the proper laser wavelength for maximally taking advantage of RE nanoparticles for the diagnosis and treatment of cancer.


Asunto(s)
Nanopartículas/uso terapéutico , Neodimio/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Terapia Fototérmica , Nanomedicina Teranóstica , Animales , Rayos Láser , Sustancias Luminiscentes/química , Sustancias Luminiscentes/uso terapéutico , Ratones , Nanopartículas/química , Neodimio/química , Imagen Óptica , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Fluoruro de Sodio/química , Fluoruro de Sodio/uso terapéutico
9.
Chem Commun (Camb) ; 55(36): 5283-5286, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30993283
10.
Sci Adv ; 5(1): eaat2953, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30662940

RESUMEN

Nanoparticles have been extensively used for inflammation imaging and photodynamic therapy of cancer. However, the major translational barriers to most nanoparticle-based imaging and therapy applications are the limited depth of tissue penetration, inevitable requirement of external irradiation, and poor biocompatibility of the nanoparticles. To overcome these critical limitations, we synthesized a sensitive, specific, biodegradable luminescent nanoparticle that is self-assembled from an amphiphilic polymeric conjugate with a luminescent donor (luminol) and a fluorescent acceptor [chlorin e6 (Ce6)] for in vivo luminescence imaging and photodynamic therapy in deep tissues. Mechanistically, reactive oxygen species (ROS) and myeloperoxidase generated in inflammatory sites or the tumor microenvironment trigger bioluminescence resonance energy transfer and the production of singlet oxygen (1O2) from the nanoparticle, enabling in vivo imaging and cancer therapy, respectively. This self-illuminating nanoparticle shows an excellent in vivo imaging capability with suitable tissue penetration and resolution in diverse animal models of inflammation. It is also proven to be a selective, potent, and safe antitumor nanomedicine that specifically kills cancer cells via in situ 1O2 produced in the tumor microenvironment, which contains a high level of ROS.


Asunto(s)
Antineoplásicos/uso terapéutico , Sustancias Luminiscentes/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/terapia , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Células A549 , Animales , Clorofilidas , Humanos , Inflamación/diagnóstico por imagen , Luminiscencia , Luminol/química , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Nanopartículas/química , Polímeros/química , Porfirinas/química , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Biomaterials ; 192: 579-589, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30551086

RESUMEN

The effective design of a targeted drug delivery system could improve the therapeutic efficacy of anticancer drugs by reducing their undesirable adsorption and toxic side effects. Here, an RGD-peptide functionalized and bioresponsive ruthenium prodrug (Ru-RGD) was designed for both cancer therapy and clinical diagnosis. This prodrug can be selectively delivered to cervical tumor sites to enhance theranostic efficacy. The benzimidazole-based ligand of the complex is susceptible to acidic conditions so, after reaching the tumor microenvironment, ligand substitution occurs and the therapeutic drug is released. The deep-red emissions produced by both one-photon and two-photon excitation increases the potential of Ru-RGD for use in the deep tissue imaging of 3D tumor spheroids. The specific accumulation of the Ru prodrug in tumor sites allows for precise tumor diagnosis and therapy in vivo. Luminescence staining of 38 clinical patient specimens shows that Ru-RGD exhibits differences in binding capability between cervical cancer and normal tissue, with a sensitivity of 95% and a specificity of 100%. This study thus provides an approach for the effective design and application of targeted metal complexes in cancer therapy and clinical diagnosis.


Asunto(s)
Antineoplásicos/uso terapéutico , Sustancias Luminiscentes/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico , Rutenio/uso terapéutico , Animales , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Sustancias Luminiscentes/química , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Óptica , Profármacos/química , Rutenio/química , Nanomedicina Teranóstica , Microambiente Tumoral/efectos de los fármacos
12.
J Nanobiotechnology ; 16(1): 19, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482561

RESUMEN

BACKGROUND: Photodynamic therapy is a promising cancer therapy modality but its application for deep-seated tumor is mainly hindered by the shallow penetration of visible light. X-ray-mediated photodynamic therapy (PDT) has gained a major attention owing to the limitless penetration of X-rays. However, substantial outcomes have still not been achieved due to the low luminescence efficiency of scintillating nanoparticles and weak energy transfer to the photosensitizer. The present work describes the development of Y2.99Pr0.01Al5O12-based (YP) mesoporous silica coated nanoparticles, multifunctionalized with protoporphyrin IX (PpIX) and folic acid (YPMS@PpIX@FA) for potential application in targeted deep PDT. RESULTS: A YP nanophosphor core was synthesized using the sol-gel method to be used as X-ray energy transducer and was then covered with a mesoporous silica layer. The luminescence analysis indicated a good spectral overlap between the PpIX and nanoscintillator at the Soret as well as Q-band region. The comparison of the emission spectra with or without PpIX showed signs of energy transfer, a prerequisite for deep PDT. In vitro studies showed the preferential uptake of the nanocomposite in cancer cells expressing the folate receptorFolr1, validating the targeting efficiency. Direct activation of conjugated PpIX with UVA in vitro induced ROS production causing breast and prostate cancer cell death indicating that the PpIX retained its activity after conjugation to the nanocomposite. The in vivo toxicity analysis showed the good biocompatibility and non-immunogenic response of YPMS@PpIX@FA. CONCLUSION: Our results indicate that YPMS@PpIX@FA nanocomposites are promising candidates for X-ray-mediated PDT of deep-seated tumors. The design of these nanoparticles allows the functionalization with exchangeable targeting ligands thus offering versatility, in order to target various cancer cells, expressing different molecular targets on their surface.


Asunto(s)
Sustancias Luminiscentes/uso terapéutico , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/uso terapéutico , Itrio/uso terapéutico , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Sustancias Luminiscentes/farmacología , Masculino , Ratones , Nanocompuestos/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/metabolismo , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Protoporfirinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/farmacología , Dióxido de Silicio/uso terapéutico , Itrio/farmacología
13.
Biomaterials ; 141: 86-95, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28668609

RESUMEN

The strong dependence on oxygen level, low ultraviolet/visible (UV/vis) light penetration depth and the extremely short lifetime of reactive oxygen species (ROS) are the major challenges of photodynamic therapy (PDT) for tumors. Fenton reaction can produce abundant ROS such as reactive hydroxyl radicals (OH) with significantly higher oxidation performance than singlet oxygen (1O2), which, however, has been rarely used in biomedical fields due to strict reaction conditions (favorably in pH range of 3-4, mostly under UV/vis light catalysis). Herein we propose and demonstrate a photochemotherapy (PCT) strategy of cancer therapy using near-infrared (NIR)-assisted tumor-specific Fenton reactions. NIR light-upconverted UV/vis light by upconversion nanoparticles (UCNPs) catalyze the intra-mitochondrial Fenton reaction between the delivered Fe2+ and H2O2 species over-expressed in cancer cell's mitochondria to in-situ kill the cancer cells. The intra-mitochondrial ROS generation of enabled by directly targeting the mitochondrial DNA (mtDNA) helix minimized the distance between the ROS and mtDNA molecules, thus the present PCT strategy showed much enhanced and tumor-specific therapeutic efficacy, as demonstrated by the intratumoral-accelerated OH burst and elevated cytotoxicity. Following the direct intratumoral injection, the PCT revealed marked tumor regression effect in vivo. This constructed PCT-agent is the first paradigm of NIR-upconversion catalyzed intra-mitochondrial Fenton reaction in response to tumoral microenvironment, establishing a novel photochemotherapy strategy for efficient cancer therapy.


Asunto(s)
ADN Mitocondrial/metabolismo , Peróxido de Hidrógeno/uso terapéutico , Hierro/uso terapéutico , Elementos de la Serie de los Lantanoides/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Rutenio/uso terapéutico , Animales , Complejos de Coordinación/administración & dosificación , Complejos de Coordinación/uso terapéutico , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/genética , Femenino , Células Hep G2 , Humanos , Peróxido de Hidrógeno/administración & dosificación , Rayos Infrarrojos , Hierro/administración & dosificación , Elementos de la Serie de los Lantanoides/administración & dosificación , Sustancias Luminiscentes/administración & dosificación , Sustancias Luminiscentes/uso terapéutico , Ratones Endogámicos BALB C , Terapia Molecular Dirigida/métodos , Nanopartículas/administración & dosificación , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Rutenio/administración & dosificación
14.
Biomaterials ; 136: 43-55, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28511143

RESUMEN

The side effects of chemotherapy bring significant physical and psychological suffering to patients. To solve this urgent medical problem, Yb3+ and Er3+ co-doped NaLuF4 upconversion nanoparticles (UCNPs) were constructed for upconversion luminescence (UCL)-labeled diagnosis under 980 nm laser irradiation. The UCNPs were then modified layer by layer with polypyrrole and a special programming DNA segment as photothermal conversion agents and controllable drug carriers, respectively. The nanoplatform was successfully used for imaging-guided synergistic therapy (photothermal therapy and chemotherapy) at a safe power density (300 mW cm-2), and DNA-assisted detoxification at lower temperature in cancer cells when the laser off. The synergistic therapy of the nanoplatform achieved a higher therapeutic index (∼85%) than chemotherapy only (∼44%) and photothermal therapy only (∼25%) in vitro. In vivo experiments also suggested that the nanoplatform had a higher therapeutic effect and lower side effects. The toxicity study was also evaluated, indicating the nanoplatform is low toxic to living system. This multifunctional upconversion nanoplatform provided an innovative method for imaging-guided photothermal-chemotherapy and laser-switchable drug detoxification.


Asunto(s)
ADN/química , Preparaciones de Acción Retardada/química , Sustancias Luminiscentes/química , Lutecio/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fluoruro de Sodio/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , ADN/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Femenino , Células HEK293 , Células HeLa , Humanos , Hipertermia Inducida , Sustancias Luminiscentes/uso terapéutico , Lutecio/uso terapéutico , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/uso terapéutico , Imagen Óptica , Fototerapia , Polímeros/química , Polímeros/uso terapéutico , Pirroles/química , Pirroles/uso terapéutico , Fluoruro de Sodio/uso terapéutico
15.
ACS Nano ; 11(6): 5864-5872, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28537714

RESUMEN

Persistent luminescence nanoparticles (PLNPs) have been used for bioimaging without autofluorescence background interference, but the poor afterglow performance impedes their further applications in cancer therapy. To overcome the Achilles' heel of PLNPs, herein we report the construction of injectable persistent luminescence implants (denoted as PL implants) as a built-in excitation source for efficient repeatable photodynamic therapy (PDT). The injectable ZGC (ZnGa1.996O4:Cr0.004) PL implants were prepared by dissolving ZGC PLNPs in poly(lactic-co-glycolic acid)/N-methylpyrrolidone oleosol, which demonstrated much stronger persistent luminescence (PersL) intensity and longer PersL lifetime than that of ZGC PLNPs both in vitro and in vivo. More importantly, the intratumorally fixed ZGC PL implants can serve as a built-in excitation source for repeatable light emitting diode (LED) and PersL-excited PDT upon and after periodic LED irradiation, which leads to the overall improvement of therapeutic effectiveness for efficient tumor growth suppression. This work represents efficient repeatable PDT based on the injectable yet periodically rechargeable ZGC PL implants.


Asunto(s)
Cromo/uso terapéutico , Galio/uso terapéutico , Sustancias Luminiscentes/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Zinc/uso terapéutico , Animales , Línea Celular Tumoral , Cromo/administración & dosificación , Cromo/química , Galio/administración & dosificación , Galio/química , Humanos , Inyecciones , Luminiscencia , Sustancias Luminiscentes/administración & dosificación , Sustancias Luminiscentes/química , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Zinc/administración & dosificación , Zinc/química
17.
Biomaterials ; 69: 89-98, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26283156

RESUMEN

Biophotonic technology that uses light and ionizing radiation for positioned cancer therapy is a holy grail in the field of biomedicine because it can overcome the systemic toxicity and adverse side effects of conventional chemotherapy. However, the existing biophotonic techniques fail to achieve the satisfactory treatment efficacy, which remains a big challenge for clinical implementation. Herein, we develop a novel theranostic technique of "intranuclear biophotonics" by the smart design of a nuclear-targeting biophotonic system based on photo-/radio-sensitizers covalently co-loaded upconversion nanoparticles. These nuclear-targeting biophotonic agents can not only generate a great deal of multiple cytotoxic reactive oxygen species in the nucleus by making full use of NIR/X-ray irradiation, but also produce greatly enhanced intranuclear synergetic radio-/photodynamic therapeutic effects under the magnetic/luminescent bimodal imaging guidance, which may achieve the optimal efficacy in treating radio-resistant tumors. We anticipate that the highly effective intranuclear biophotonics will contribute significantly to the development of biophotonic techniques and open new perspectives for a variety of cancer theranostic applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sustancias Luminiscentes/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/terapia , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Línea Celular , Femenino , Humanos , Sustancias Luminiscentes/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Nanomedicina Teranóstica
18.
Dalton Trans ; 44(33): 14686-96, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26215789

RESUMEN

Magnetic luminescent hybrid nanostructures (MLHN) have received a great deal of attention due to their potential biomedical applications such as thermal therapy, magnetic resonance imaging, drug delivery and intracellular imaging. We report the development of bifunctional Fe3O4 decorated YPO4:Eu hybrid nanostructures by covalent bridging of carboxyl PEGylated Fe3O4 and amine functionalized YPO4:Eu particles. The surface functionalization of individual nanoparticulates as well as their successful conjugation was evident from Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta-potential and transmission electron microscopy (TEM) studies. X-ray diffraction (XRD) analysis reveals the formation of highly crystalline hybrid nanostructures. TEM micrographs clearly show the binding/anchoring of 10 nm Fe3O4 nanoparticles onto the surface of 100-150 nm rice grain shaped YPO4:Eu nanostructures. These MLHN show good colloidal stability, magnetic field responsivity and self-heating capacity under an external AC magnetic field. The induction heating studies confirmed localized heating of MLHN under an AC magnetic field with a high specific absorption rate. Photoluminescence spectroscopy and fluorescence microscopy results show optical imaging capability of MLHN. Furthermore, successful internalization of these MLHN in the cells and their cellular imaging ability are confirmed from confocal microscopy imaging. Specifically, the hybrid nanostructure provides an excellent platform to integrate luminescent and magnetic materials into one single entity that can be used as a potential tool for hyperthermia treatment of cancer and cellular imaging.


Asunto(s)
Europio/química , Óxido Ferrosoférrico/química , Sustancias Luminiscentes/química , Nanoestructuras/química , Fosfatos/química , Itrio/química , Línea Celular Tumoral , Europio/uso terapéutico , Óxido Ferrosoférrico/uso terapéutico , Humanos , Hipertermia Inducida , Sustancias Luminiscentes/uso terapéutico , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Nanoestructuras/uso terapéutico , Nanoestructuras/ultraestructura , Neoplasias/diagnóstico , Neoplasias/terapia , Imagen Óptica , Itrio/uso terapéutico
19.
Biomaterials ; 63: 102-14, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093791

RESUMEN

The design and development of functional hybrid nanomaterials is currently a topic of great interest in biomedicine. Herein we investigated the grafting of Ru(II) polypyridyl complexes onto gold nanospheres (Ru@AuNPs) to improve the particles' near infrared (NIR) absorption, and ultimately allow for application in photothermal cancer therapy. As demonstrated in this article, these ruthenium(II) complexes could indeed significantly enhance gold nanospheres' two-photon luminescence (PTL) intensity and photothermal therapy (PTT) efficiency. The best dual functional nanoparticles of this study were successfully used for real-time luminescent imaging-guided PTT in live cancer cells. Furthermore, in vivo tumor ablation was achieved with excellent treatment efficacy under a diode laser (808 nm) irradiation at the power density of 0.8 W/cm(2) for 5 min. This study demonstrates that the coupling of inert Ru(II) polypyridyl complexes to gold nanospheres allows for the enhancement of two-photon luminescence and for efficient photothermal effect.


Asunto(s)
Complejos de Coordinación/química , Oro/química , Sustancias Luminiscentes/química , Nanopartículas/química , Piridinas/química , Rutenio/química , Neoplasias del Cuello Uterino/diagnóstico , Animales , Línea Celular Tumoral , Cuello del Útero/patología , Complejos de Coordinación/uso terapéutico , Femenino , Oro/uso terapéutico , Células HeLa , Humanos , Hipertermia Inducida , Luminiscencia , Sustancias Luminiscentes/uso terapéutico , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/uso terapéutico , Nanopartículas/ultraestructura , Fototerapia , Piridinas/uso terapéutico , Rutenio/uso terapéutico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia
20.
Biomaterials ; 63: 115-27, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093792

RESUMEN

To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 - (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core-shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light.


Asunto(s)
Acrilamidas/química , Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Sustancias Luminiscentes/química , Nanoconjugados/química , Neoplasias/diagnóstico , Neoplasias/terapia , Ácidos Polimetacrílicos/química , Acrilamidas/uso terapéutico , Animales , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Hipertermia Inducida/métodos , Sustancias Luminiscentes/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Nanoconjugados/uso terapéutico , Nanoconjugados/ultraestructura , Imagen Óptica , Fotoquimioterapia/métodos , Ácidos Polimetacrílicos/uso terapéutico , Temperatura , Nanomedicina Teranóstica/métodos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA