Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
ACS Appl Mater Interfaces ; 13(42): 49692-49704, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34645258

RESUMEN

The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.


Asunto(s)
Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Nanopartículas de Magnetita/química , Péptidos/farmacología , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Hidrogeles/administración & dosificación , Hidrogeles/química , Inyecciones Subcutáneas , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Osteoblastos/efectos de los fármacos , Péptidos/administración & dosificación , Péptidos/química
2.
J Mater Chem B ; 9(40): 8389-8398, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34676863

RESUMEN

Nanocapsules are an excellent platform for the delivery of macromolecular payloads such as proteins, nucleic acids or polyprodrugs, since they can both protect the sensitive cargo and target its delivery to the desired site of action. However, the release of macromolecules from nanocapsules remains a challenge due to their restricted diffusion through the nanoshell compared to small molecule cargo. Here, we designed degradable protein nanocapsules with varying crosslinking densities of the nanoshell to control the release of model macromolecules. While the crosslinking did not influence the degradability of the capsules by natural proteases, it significantly affected the release profiles. Furthermore, the optimized protein nanocapsules were successfully used to deliver and effectively release a bioactive macromolecular vaccine adjuvant in vitro and, thus, can be used as an efficient platform for the design of potential nanovaccines.


Asunto(s)
Sustancias Macromoleculares/administración & dosificación , Nanocápsulas/química , Proteínas/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Endopeptidasa K/metabolismo , Fluorescamina , Sustancias Macromoleculares/química , Permeabilidad , Vacunas/administración & dosificación
3.
Adv Drug Deliv Rev ; 171: 77-93, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539854

RESUMEN

Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sustancias Macromoleculares/administración & dosificación , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antivirales/administración & dosificación , Antivirales/química , Infecciones Bacterianas/tratamiento farmacológico , Glicosilación , Humanos , Sustancias Macromoleculares/química , Neoplasias/tratamiento farmacológico , Virosis/tratamiento farmacológico
4.
Angew Chem Int Ed Engl ; 60(12): 6509-6517, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33427367

RESUMEN

Cancer chemotherapy typically relies on drug endocytosis and inhibits tumor cell proliferation via intracellular pathways; however, severe side effects may arise. In this study, we performed a first attempt to develop macromolecular-induced extracellular chemotherapy involving biomineralization by absorbing calcium from the blood through a new type of drug, polysialic acid conjugated with folate (folate-polySia), which selectively induces biogenic mineral formation on tumor cells and results in the pathological calcification of tumors. The macromolecule-initiated extracellular calcification causes cancer cell death mainly by intervening with the glycolysis process in cancer cells. Systemic administration of folate-polySia inhibited cervical and breast tumor growth and dramatically improved survival rates in mice. This study provides an extracellular therapeutic approach for malignant tumor diseases via calcification that is ready for clinical trials and offers new insights into macromolecular anticancer drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ácido Fólico/farmacología , Sustancias Macromoleculares/farmacología , Ácidos Siálicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Ácido Fólico/administración & dosificación , Ácido Fólico/química , Humanos , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/química , Estructura Molecular , Ácidos Siálicos/administración & dosificación , Ácidos Siálicos/química , Relación Estructura-Actividad
5.
J Ocul Pharmacol Ther ; 36(4): 247-256, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32155098

RESUMEN

Purpose: The objectives were to investigate the effect of transscleral iontophoresis of macromolecules in vitro and in vivo, to study the importance of electroosmosis on macromolecules of low charge to mass ratio, and to evaluate transscleral iontophoresis efficacy in a choroidal neovascularization (CNV) animal model. Methods: Through in vitro transport experiments, the permeability coefficients of macromolecules [eg, immunoglobulin G (IgG), dextran 70 kDa] were determined under different conditions. The effect of ionic strength formulations and iontophoretic conditions was studied on the distribution of IgG and bevacizumab into the eye in vivo. Magnetic resonance imaging (MRI) was utilized to evaluate in vivo real time distribution of gadolinium-labeled albumin (Galbumin) following iontophoresis. The efficacy between no treatment, intravitreal injection (IVT), and iontophoresis of bevacizumab on a CNV model of subretinal injection of adeno-associated virus encoding human VEGF-165 was investigated. Results: The permeability data suggested a significant effect of ionic strength on the iontophoretic transport of macromolecules. Transscleral iontophoresis of IgG at 4 mA with a low ionic strength formulation was about 600 times greater than passive diffusion and 14-fold over a conventional formulation in vitro. Approximately 0.6 mg of bevacizumab can be delivered into the rabbit eye in vivo with a 20-min treatment of iontophoresis. MRI showed that Galbumin was in the posterior tissues after iontophoresis. In the CNV model, the iontophoresis and IVT methods of bevacizumab delayed retinal neovascularization by 4 and 8 weeks, respectively. Conclusions: Transscleral iontophoresis is capable of delivering macromolecule drugs through the conjunctiva and sclera, eventually exposing the retina/choroid to the drugs.


Asunto(s)
Bevacizumab/farmacocinética , Neovascularización Coroidal/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Iontoforesis/métodos , Sustancias Macromoleculares/farmacocinética , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Bevacizumab/administración & dosificación , Bevacizumab/uso terapéutico , Transporte Biológico , Conjuntiva/efectos de los fármacos , Conjuntiva/metabolismo , Electroósmosis/métodos , Inmunoglobulina G/efectos de los fármacos , Inmunoglobulina G/metabolismo , Inyecciones Intravítreas , Sustancias Macromoleculares/administración & dosificación , Imagen por Resonancia Magnética/métodos , Modelos Animales , Permeabilidad/efectos de los fármacos , Conejos , Esclerótica/efectos de los fármacos , Esclerótica/metabolismo
6.
Angew Chem Int Ed Engl ; 59(11): 4415-4420, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31876017

RESUMEN

Bladder cancer (BC) is a prevalent disease with high morbidity and mortality; however, in vivo optical imaging of BC remains challenging because of the lack of cancer-specific optical agents with high renal clearance. Herein, a macromolecular reporter (CyP1) was synthesized for real-time near-infrared fluorescence (NIRF) imaging and urinalysis of BC in living mice. Because of the high renal clearance (ca. 94 % of the injection dosage at 24 h post-injection) and its cancer biomarker (APN=aminopeptidase N) specificity, CyP1 can be efficiently transported to the bladder and specially turn on its NIRF signal to report the detection of BC in living mice. Moreover, CyP1 can be used for optical urinalysis, permitting the ex vivo tracking of tumor progression for therapeutic evaluation and easy translation of CyP2 as an in vitro diagnostic assay. This study not only provides new opportunities for non-invasive diagnosis of BC, but also reveals useful guidelines for the development of molecular reporters for the detection of bladder diseases.


Asunto(s)
Aminopeptidasas/metabolismo , Biomarcadores de Tumor/metabolismo , Colorantes Fluorescentes/farmacocinética , Sustancias Macromoleculares/farmacocinética , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Animales , Transporte Biológico , Carbocianinas/química , Humanos , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/orina , Ratones , Neoplasias Experimentales , Imagen Óptica , Espectroscopía Infrarroja Corta
7.
Nat Commun ; 10(1): 5012, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676764

RESUMEN

Peptides and biologics provide unique opportunities to modulate intracellular targets not druggable by conventional small molecules. Most peptides and biologics are fused with cationic uptake moieties or formulated into nanoparticles to facilitate delivery, but these systems typically lack potency due to low uptake and/or entrapment and degradation in endolysosomal compartments. Because most delivery reagents comprise cationic lipids or polymers, there is a lack of reagents specifically optimized to deliver cationic cargo. Herein, we demonstrate the utility of the cytocompatible polymer poly(propylacrylic acid) (PPAA) to potentiate intracellular delivery of cationic biomacromolecules and nano-formulations. This approach demonstrates superior efficacy over all marketed peptide delivery reagents and enhances delivery of nucleic acids and gene editing ribonucleoproteins (RNPs) formulated with both commercially-available and our own custom-synthesized cationic polymer delivery reagents. These results demonstrate the broad potential of PPAA to serve as a platform reagent for the intracellular delivery of cationic cargo.


Asunto(s)
Acrilatos/química , Endosomas/química , Sustancias Macromoleculares/química , Nanopartículas/química , Péptidos/química , Polímeros/química , Animales , Aniones/química , Cationes/química , Línea Celular , Células Cultivadas , Sistemas de Liberación de Medicamentos/métodos , Endosomas/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Células MCF-7 , Sustancias Macromoleculares/administración & dosificación , Ratones , Células 3T3 NIH , Nanopartículas/administración & dosificación , Péptidos/administración & dosificación , Células RAW 264.7 , Ratas , Reproducibilidad de los Resultados
8.
Sci Rep ; 9(1): 17530, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772312

RESUMEN

Femtosecond laser photoporation has become a popular method to deliver various kinds of molecules such as genes, proteins, and fluorescent dyes into single mammalian cells. However, this method is not easily applied to plant cells because their cell wall and turgor pressure prevent the delivery, especially for larger molecules than the mesh size of the cell wall. This work is the first demonstration of the efficient photoinjection of megadalton molecules into a cytoplasm of an intact single plant cell by employing a femtosecond laser amplifier under moderate enzyme treatment conditions. The intense femtosecond laser pulse effectively formed a pore on the cell wall and membrane of Tobacco BY-2, and 2 MDa dextran molecules were introduced through the pore. Along with the pore formation, induced mechanical tensile stresses on BY-2 cells were considered to increase permeability of the cell membrane and enhance the uptake of large molecules. Moreover, the moderate enzyme treatment partially degraded the cell wall thereby facilitating the increase of the molecular introduction efficiency.


Asunto(s)
Sustancias Macromoleculares/administración & dosificación , Microinyecciones/métodos , Células Vegetales , Amplificadores Electrónicos , Membrana Celular , Pared Celular , Dextranos/administración & dosificación , Enzimas/metabolismo , Técnicas de Transferencia de Gen , Rayos Láser , Microscopía Confocal , Células Vegetales/ultraestructura , Nicotiana/citología
9.
ACS Nano ; 13(11): 12957-12968, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31651153

RESUMEN

Filamentous microorganisms traveling in aerosol particles display enhanced deposition and retention in the lungs. Inspired by this shape-related biological effect, we report here on the use of supramolecular filaments as potential inhalable drug carriers within aerosols via jet nebulization. We found that the peptide design and supramolecular stability play a crucial role in the interfacial stability and aerosolization properties of the supramolecular filaments. Monomeric units with a positively charged C-terminus produced filaments with reduced aerosol stability, promoting morphological changes after nebulization. Conversely, having a neutral or negatively charged terminus yielded filaments with enhanced stability, where supramolecular integrity is maintained with only reduced length. Our results suggest that molecular enrichment at the air-liquid interface during nebulization is the primary factor to deplete the monomeric peptide amphiphiles in solution, accounting for the observed morphological disruption/transitions. Importantly, encapsulation of drugs and dyes within filaments notably stabilize their supramolecular structure during nebulization, and the loaded filaments exhibit a linear release profile from a nebulizer device. We envision the use of this supramolecular carrier system as an effective platform for the inhalation-based treatment of many lung diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Administración por Inhalación , Aerosoles/administración & dosificación , Aerosoles/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Cumarinas/química , Cumarinas/uso terapéutico , Estabilidad de Medicamentos , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/química , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Paclitaxel/química , Paclitaxel/uso terapéutico , Tamaño de la Partícula , Péptidos/administración & dosificación , Péptidos/síntesis química , Péptidos/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Propiedades de Superficie , Tiazoles/química , Tiazoles/uso terapéutico
10.
Theranostics ; 9(11): 3293-3307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244955

RESUMEN

The noninvasive nature of photodynamic therapy (PDT) enables the preservation of organ function in cancer patients. However, PDT is impeded by hypoxia in the tumor microenvironment (TME) caused by high intracellular oxygen (O2) consumption and distorted tumor blood vessels. Therefore, increasing oxygen generation in the TME would be a promising methodology for enhancing PDT. Herein, we proposed a concept of ferroptosis-promoted PDT based on the biochemical characteristics of cellular ferroptosis, which improved the PDT efficacy significantly by producing reactive oxygen species (ROS) and supplying O2 sustainably through the Fenton reaction. In contrast to traditional strategies that increase O2 based on decomposition of limited concentration of hydrogen peroxide (H2O2), our methodology could maintain the concentration of H2O2 and O2 through the Fenton reaction. Methods: For its association with sensitivity to ferroptosis, solute carrier family 7 member 11 (SLC7A11) expression was characterized by bioinformatics analysis and immunohistochemistry of oral tongue squamous cell carcinoma (OTSCC) specimens. Afterwards, the photosensitizer chlorin e6 (Ce6) and the ferroptosis inducer erastin were self-assembled into a novel supramolecular Ce6-erastin nanodrug through hydrogen bonding and π-π stacking. Then, the obtained Ce6-erastin was extensively characterized and its anti-tumor efficacy towards OTSCC was evaluated both in vitro and in vivo. Results: SLC7A11 expression is found to be upregulated in OTSCC, which is a potential target for ferroptosis-mediated OTSCC treatment. Ce6-erastin nanoparticles exhibited low cytotoxicity to normal tissues. More significantly, The over-accumulated intracellular ROS, increased O2 concentration and inhibited SLC7A11 expression lead to enhanced toxicity to CAL-27 cells and satisfactory antitumor effects to xenograft tumour mouse model upon irradiation. Conclusion: Our ferroptosis promoted PDT approach markedly enhances anticancer actions by relieving hypoxia and promoting ROS production, thereby our work provides a new approach for overcoming hypoxia-associated resistance of PDT in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Sustancias Macromoleculares/farmacología , Nanomedicina/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Sistema de Transporte de Aminoácidos y+/análisis , Animales , Antineoplásicos/administración & dosificación , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Sustancias Macromoleculares/administración & dosificación , Ratones Endogámicos BALB C , Modelos Teóricos , Nanoestructuras , Fármacos Fotosensibilizantes/administración & dosificación , Piperazinas/administración & dosificación , Piperazinas/farmacología , Porfirinas/administración & dosificación , Porfirinas/farmacología , Neoplasias de la Lengua/tratamiento farmacológico , Neoplasias de la Lengua/patología
11.
Theranostics ; 9(11): 3341-3364, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244957

RESUMEN

Major objectives in nanomedicine and nanotherapy include the ability to trap therapeutic molecules inside of nano-carriers, carry therapeutics to the site of the disease with no leakage, release high local concentrations of drug, release only on demand - either autonomous or external, and kill the cancer cells or an infectious organism. This review will focus on mesoporous silica nanoparticle carriers (MSN) with a large internal pore volume suitable for carrying anticancer and antibiotic drugs, and supramolecular components that function as caps that can both trap and release the drugs on-command. Caps that are especially relevant to this review are rotaxanes and pseudorotaxanes that consist of a long chain-like molecule threaded through a cyclic molecule. Under certain conditions discussed throughout this review, the cyclic molecule can be attracted to one end of the rotaxane and in the presence of a stimulus can slide to the other end. When the thread is attached near the pore opening on MSNs, the sliding cyclic molecule can block the pore when it is near the particle or open it when it slides away. The design, synthesis and operation of supramolecular systems that act as stimuli-responsive pore capping devices that trap and release molecules for therapeutic or imaging applications are discussed. Uncapping can either be irreversible because the cap comes off, or reversible when the cyclic molecule is prevented from sliding off by a steric barrier. In the latter case the amount of cargo released (the dose) can be controlled. These nanomachines act as valves. Examples of supramolecular systems stimulated by chemical signals (pH, redox, enzymes, antibodies) or by external physical signals (light, heat, magnetism, ultrasound) are presented. Many of the systems have been studied in vitro proving that they are taken up by cancer cells and release drugs and kill the cells when stimulated. Some have been studied in mouse models; after IV injection they shrink tumors or kill intracellular pathogens after stimulation. Supramolecular constructs offer fascinating, highly controllable and biologically compatible platforms for drug delivery.


Asunto(s)
Antibacterianos/administración & dosificación , Antineoplásicos/administración & dosificación , Compuestos de Calcio , Sistemas de Liberación de Medicamentos , Sustancias Macromoleculares/administración & dosificación , Nanopartículas , Silicatos , Animales , Línea Celular , Humanos , Sustancias Macromoleculares/farmacocinética , Sustancias Macromoleculares/farmacología , Ratones , Nanomedicina/métodos , Nanomedicina/tendencias , Rotaxanos/administración & dosificación , Rotaxanos/farmacocinética , Rotaxanos/farmacología
12.
Sci Rep ; 9(1): 442, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679644

RESUMEN

Delivery of therapeutic small interfering RNAs (siRNAs) in an effective dose to articular cartilage is very challenging as the cartilage dense extracellular matrix renders the chondrocytes inaccessible, even to intra-articular injections. Herein, we used a self-assembling peptidic nanoparticle (NP) platform featuring a cell penetrating peptide complexed to NF-κB p65 siRNA. We show that it efficiently and deeply penetrated human cartilage to deliver its siRNA cargo up to a depth of at least 700 µm. To simulate osteoarthritis in vitro, human articular cartilage explants were placed in culture and treated with IL-1ß, a cytokine with known cartilage catabolic and pro-inflammatory effects. Exposure of peptide-siRNA NP to cartilage explants markedly suppressed p65 activation, an effect that persisted up to 3 weeks after an initial 48 h exposure to NP and in the presence of continuous IL-1ß stimulation. Suppression of IL-1ß-induced p65 activity attenuated chondrocyte apoptosis and maintained cartilage homeostasis. These findings confirm our previous in vivo studies in a murine model of post-traumatic osteoarthritis and suggest that the ability of peptide-siRNA NP to specifically modulate NF-κB pathway, a central regulator of the inflammatory responses in chondrocytes, may potentially mitigate the progression of cartilage degeneration.


Asunto(s)
Cartílago Articular/metabolismo , Sustancias Macromoleculares/administración & dosificación , Nanopartículas/administración & dosificación , Péptidos/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Transcripción ReIA/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Cartílago Articular/efectos de los fármacos , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Interleucina-1beta/farmacología , Ratones , Nanopartículas/química , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/terapia , Péptidos/química , ARN Interferente Pequeño/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción ReIA/metabolismo
13.
Adv Drug Deliv Rev ; 136-137: 2-27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30359631

RESUMEN

Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.


Asunto(s)
Colon/metabolismo , Enfermedades del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Sustancias Macromoleculares/administración & dosificación , Sustancias Macromoleculares/farmacocinética , Humanos , Sustancias Macromoleculares/uso terapéutico
14.
Ther Deliv ; 9(9): 667-689, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30189809

RESUMEN

The aim of this article is to collate the recent developments in the field of drug delivery, medical therapeutics and diagnostics specifically involving the nonlamellar liquid crystalline (NLC) systems. This review highlights different NLC phases having cubic, hexagonal and sponge internal structures, and their application in the field of drug delivery, such as dose reduction, toxicity reduction and therapeutic efficacy enhancement either in the form of nanoparticles, colloidal dispersion or gels. In addition, application of NLC systems as vehicles for peptides, proteins and as a theranostic system in cancer and other disease conditions is also elaborated, which is a growing platform of interest. Overall, the present review gives us a complete outlook on applications of NLC systems in the field of medicine.


Asunto(s)
Productos Biológicos/administración & dosificación , Portadores de Fármacos/química , Cristales Líquidos/química , Sustancias Macromoleculares/administración & dosificación , Nanopartículas/química , Productos Biológicos/farmacocinética , Química Farmacéutica , Humanos , Sustancias Macromoleculares/farmacocinética , Péptidos/administración & dosificación , Péptidos/farmacocinética , Nanomedicina Teranóstica/métodos
15.
Sci Rep ; 8(1): 3727, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487375

RESUMEN

Delivery of large and structurally complex target molecules into cells is vital to the emerging areas of cellular modification and molecular therapy. Inadequacy of prevailing in vivo (viral) and in vitro (liposomal) gene transfer methods for delivery of proteins and a growing diversity of synthetic nanomaterials has encouraged development of alternative physical approaches. Efficacy of injury/diffusion-based delivery via shear mechanoporation is largely insensitive to cell type and target molecule; however, enhanced flexibility is typically accompanied by reduced gene transfer effectiveness. We detail a method to improve transfection efficiency through coordinated mechanical disruption of the cell membrane and electrophoretic insertion of DNA to the cell interior. An array of micromachined nozzles focuses ultrasonic pressure waves, creating a high-shear environment that promotes transient pore formation in membranes of transmitted cells. Acoustic Shear Poration (ASP) allows passive cytoplasmic delivery of small to large nongene macromolecules into established and primary cells at greater than 75% efficiency. Addition of an electrophoretic action enables active transport of target DNA molecules to substantially augment transfection efficiency of passive mechanoporation/diffusive delivery without affecting viability. This two-stage poration/insertion method preserves the compelling flexibility of shear-based delivery, yet substantially enhances capabilities for active transport and transfection of plasmid DNA.


Asunto(s)
Electroforesis/métodos , Técnicas de Transferencia de Gen , Transfección/métodos , Ondas Ultrasónicas , Línea Celular , Permeabilidad de la Membrana Celular , ADN/administración & dosificación , Difusión , Electroforesis/instrumentación , Electroporación , Humanos , Sustancias Macromoleculares/administración & dosificación , Transfección/instrumentación
16.
Theranostics ; 7(7): 1806-1819, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638469

RESUMEN

Poly(ß-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Portadores de Fármacos/farmacocinética , Sustancias Macromoleculares/farmacocinética , Malatos/farmacocinética , Terapia Molecular Dirigida/métodos , Polímeros/farmacocinética , Animales , Línea Celular Tumoral , Fenómenos Químicos , Modelos Animales de Enfermedad , Portadores de Fármacos/administración & dosificación , Endocitosis , Xenoinjertos , Humanos , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/administración & dosificación , Malatos/administración & dosificación , Ratones , Nanoestructuras/administración & dosificación , Polímeros/administración & dosificación , Resultado del Tratamiento
17.
Eur J Pharm Biopharm ; 114: 145-153, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28159722

RESUMEN

Cell-penetrating peptides are short cationic peptides with inherent ability to cross the plasma membrane barrier as well as intracellularly deliver cargo molecules conjugated to them. Venoms from snakes, scorpions and spiders are rich in membrane-active peptides. Crotamine from snake venom as well as maurocalcine and imperatoxin isolated from scorpion venoms have been reported to possess cell-penetrating property in mammalian cells. Latarcins, a group of spider venom toxins, has also been reported to possess antimicrobial property. However, cell-penetrating ability of Latarcins is still not elucidated. This is the first report where cell-penetrating ability of a peptide derived from spider toxin, Latarcin 1 has been demonstrated. Interestingly, the structurally minimized sequence of Latarcin 1 (LDP - Latarcin-derived peptide) when conjugated with nuclear localization sequence from Simian Virus T40 antigen (LDP-NLS) translocates across cell membrane in HeLa cells. The chimeric LDP-NLS peptide also did not exhibit cytotoxicity towards mammalian cells in contrast to the LDP that showed lesser uptake and higher cytotoxicity. LDP-NLS also successfully delivered macromolecular protein cargo inside the cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Venenos de Araña/farmacología , Antígenos Virales/química , Péptidos Catiónicos Antimicrobianos/toxicidad , Línea Celular , Péptidos de Penetración Celular/toxicidad , Simulación por Computador , Sistemas de Liberación de Medicamentos , Endocitosis/efectos de los fármacos , Células HeLa , Humanos , Sustancias Macromoleculares/administración & dosificación , Virus 40 de los Simios , Venenos de Araña/toxicidad , beta-Galactosidasa/metabolismo
18.
Expert Opin Drug Deliv ; 14(2): 245-255, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27426871

RESUMEN

INTRODUCTION: One of the major limiting steps in order to have an effective drug is the passage through one or more cell membranes to reach its site of action. To reach the action-site, the specific macromolecules are required to be delivered specifically to the cell compartment/organelle in their (pre)active form. Areas covered: In this review, we will discuss cell-penetrating peptides (CPPs) developed in the last decade to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into specific sites of the cell. The article describes CPPs in complex with cargo molecules that target specific intracellular organelles and their potential for pharmacological or clinical use. Expert opinion: Organelle targeting is the ultimate goal to ensure selective delivery to the site of action in the cells. CPP technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat genomic diseases as well as infections, cancer, neurodegenerative and hereditary diseases. They have proven to be successful in delivering various therapeutic agents into cells however, further in vivo experiments and clinical trials are required to demonstrate the efficacy of this technology.


Asunto(s)
Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos , Orgánulos/metabolismo , Membrana Celular/metabolismo , ADN/administración & dosificación , Humanos , Sustancias Macromoleculares/administración & dosificación , Nanopartículas , Plásmidos/administración & dosificación
19.
J Control Release ; 241: 186-193, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27686583

RESUMEN

Mild hyperthermia has been used in combination with polymer therapeutics to further increase delivery to solid tumors and enhance efficacy. An attractive method for generating heat is through non-invasive high intensity focused ultrasound (HIFU). HIFU is often used for ablative therapies and must be adapted to produce uniform mild hyperthermia in a solid tumor. In this work a magnetic resonance imaging guided HIFU (MRgHIFU) controlled feedback system was developed to produce a spatially uniform 43°C heating pattern in a subcutaneous mouse tumor. MRgHIFU was employed to create hyperthermic conditions that enhance macromolecular delivery. Using a mouse model with two subcutaneous tumors, it was demonstrated that MRgHIFU enhanced delivery of both Evans blue dye (EBD) and Gadolinium-chelated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. The EBD accumulation in the heated tumors increased by nearly 2-fold compared to unheated tumors. The Gadolinium-chelated HPMA copolymers also showed significant enhancement in accumulation over control as evaluated through MRI T1-mapping measurements. Results show the potential of HIFU-mediated hyperthermia for enhanced delivery of polymer therapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hipertermia Inducida/métodos , Sustancias Macromoleculares/administración & dosificación , Acrilamidas/administración & dosificación , Acrilamidas/metabolismo , Animales , Azul de Evans/administración & dosificación , Azul de Evans/metabolismo , Gadolinio/administración & dosificación , Gadolinio/metabolismo , Sustancias Macromoleculares/metabolismo , Imagen por Resonancia Magnética , Ratones Endogámicos , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Sci Rep ; 6: 32301, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604151

RESUMEN

Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.


Asunto(s)
Productos Biológicos/metabolismo , Péptidos de Penetración Celular/metabolismo , Endosomas/metabolismo , Sustancias Macromoleculares/metabolismo , Sitios de Unión/genética , Productos Biológicos/administración & dosificación , Línea Celular , Línea Celular Tumoral , Péptidos de Penetración Celular/genética , Sistemas de Liberación de Medicamentos/métodos , Endocitosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células MCF-7 , Sustancias Macromoleculares/administración & dosificación , Microscopía Fluorescente , Péptidos/administración & dosificación , Péptidos/genética , Péptidos/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Imagen de Lapso de Tiempo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA