Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.054
Filtrar
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 755-762, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918199

RESUMEN

Objective: To investigate the physicochemical properties, osteogenic properties, and osteogenic ability in rabbit model of femoral condylar defect of acellular dermal matrix (ADM)/dicalcium phosphate (DCP) composite scaffold. Methods: ADM/DCP composite scaffolds were prepared by microfibril technique, and the acellular effect of ADM/DCP composite scaffolds was detected by DNA residue, fat content, and α-1,3-galactosyle (α-Gal) epitopes; the microstructure of scaffolds was characterized by field emission scanning electron microscopy and mercury porosimetry; X-ray diffraction was used to analyze the change of crystal form of scaffold; the solubility of scaffolds was used to detect the pH value and calcium ion content of the solution; the mineralization experiment in vitro was used to observe the surface mineralization. Twelve healthy male New Zealand white rabbits were selected to prepare the femoral condylar defect models, and the left and right defects were implanted with ADM/DCP composite scaffold (experimental group) and skeletal gold ® artificial bone repair material (control group), respectively. Gross observation was performed at 6 and 12 weeks after operation; Micro-CT was used to detect and quantitatively analyze the related indicators [bone volume (BV), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone mineral density (BMD)], and HE staining and Masson staining were performed to observe the repair of bone defects and the maturation of bone matrix. Results: Gross observation showed that the ADM/DCP composite scaffold was a white spongy solid. Compared with ADM, ADM/DCP composite scaffolds showed a significant decrease in DNA residue, fat content, and α-Gal antigen content ( P<0.05). Field emission scanning electron microscopy showed that the ADM/DCP composite scaffold had a porous structure, and DCP particles were attached to the porcine dermal fibers. The porosity of the ADM/DCP composite scaffold was 76.32%±1.63% measured by mercury porosimetry. X-ray diffraction analysis showed that the crystalline phase of DCP in the ADM/DCP composite scaffolds remained intact. Mineralization results in vitro showed that the hydroxyapatite layer of ADM/DCP composite scaffolds was basically mature. The repair experiment of rabbit femoral condyle defect showed that the incision healed completely after operation without callus or osteophyte. Micro-CT showed that bone healing was complete and a large amount of new bone tissue was generated in the defect site of the two groups, and there was no difference in density between the defect site and the surrounding bone tissue, and the osteogenic properties of the two groups were equivalent. There was no significant difference in BV, BV/TV, BS/BV, Tb.Th, Tb.N, and BMD between the two groups ( P>0.05), except that the Tb.Sp in the experimental group was significantly higher than that in the control group ( P<0.05). At 6 and 12 weeks after operation, HE staining and Masson staining showed that the new bone and autogenous bone fused well in both groups, and the bone tissue tended to be mature. Conclusion: The ADM/DCP composite scaffold has good biocompatibility and osteogenic ability similar to the artificial bone material in repairing rabbit femoral condylar defects. It is a new scaffold material with potential in the field of bone repair.


Asunto(s)
Dermis Acelular , Regeneración Ósea , Sustitutos de Huesos , Fosfatos de Calcio , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Animales , Conejos , Fosfatos de Calcio/química , Masculino , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Materiales Biocompatibles/química , Fémur/cirugía , Microscopía Electrónica de Rastreo , Ensayo de Materiales
2.
J Mater Chem B ; 12(26): 6394-6409, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38855886

RESUMEN

This study develops a composite bone graft of CaO-MgO-SiO2 glass-ceramic and CaSO4 [abbreviated as (CMS)3-x(CS)x] via the sponge replication technique with weight fractions of x = 0, 1, 1.5, 2, and 3. The (CMS)1.5(CS)1.5 composite displays a superior degradability and, a suitable compressive strength of ∼3 MPa, and excellent cell proliferation and differentiation. The in vivo rat femur test in the hybrid-pore (CMS)1.5(CS)1.5 composite granules achieves a higher rate of bone formation, which is ∼2.7 times better than that of the commercial HAP/ß-TCP at 12 weeks. Improved expressions of osteocyte and mature osteocyte marker genes, namely (Spp1, Dmp1, and Fgf23), were observed in the (CMS)1.5(CS)1.5 group, indicating a faster differentiation into mature bone tissue. The ions release of (CMS)1.5(CS)1.5 through the ERK1/2 signaling pathway promotes osteogenic differentiation. The high bone generation rate can be attributed to faster active ions release and modified surface topography. This work highlights an excellent bone graft candidate for clinical applications in orthopedic surgery.


Asunto(s)
Cerámica , Osteogénesis , Cerámica/química , Animales , Osteogénesis/efectos de los fármacos , Ratas , Diferenciación Celular/efectos de los fármacos , Compuestos de Calcio/química , Ratas Sprague-Dawley , Proliferación Celular/efectos de los fármacos , Óxidos/química , Dióxido de Silicio/química , Masculino , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Trasplante Óseo/métodos , Óxido de Magnesio/química , Propiedades de Superficie , Fémur
3.
J Mater Sci Mater Med ; 35(1): 33, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900208

RESUMEN

Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.


Asunto(s)
Regeneración Ósea , Supervivencia Celular , Vidrio , Fosfatos , Estroncio , Titanio , Estroncio/química , Estroncio/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Fosfatos/química , Fosfatos/farmacología , Vidrio/química , Titanio/química , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Zinc/química , Línea Celular , Osteoblastos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Microtomografía por Rayos X
4.
Biomater Adv ; 161: 213900, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772132

RESUMEN

This study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation. Subsequent research involving animal subjects was conducted to explore the effects of sterilized implants. Eventually, three clinical cases were selected for the implantation studies as part of a phase 1 non-randomized open-label clinical trial. It was shown that a 25 kGy gamma-ray dose for sterilizing the printed implants did not alter the required geometrical precision of the printed implants. The implants exhibited well-distributed HA and strength comparable to cancellous bone. Gamma radiation reduced hydrophobicity and water uptake capacity without inducing pyrogenic or inflammatory responses. Personalized PCL/HA substitutes successfully treated various craniomaxillofacial defects, including trauma-induced facial asymmetry and congenital deformities. HA nanoparticles in the ink stimulated significant osteoconductive responses within three months of implantation. Moreover, the results revealed that while larger implants may exhibit a slower bone formation response in comparison to smaller implants, they generally had an acceptable rate and volume of bone formation. This clinical trial suggests the application of a sterilized PCL/HA composite for craniomaxillofacial surgery is safe and could be considered as a substitute for autologous bone.


Asunto(s)
Durapatita , Rayos gamma , Poliésteres , Impresión Tridimensional , Durapatita/química , Durapatita/uso terapéutico , Humanos , Poliésteres/química , Animales , Esterilización/métodos , Masculino , Femenino , Andamios del Tejido/química , Prótesis e Implantes , Adulto , Sustitutos de Huesos/química , Sustitutos de Huesos/uso terapéutico
5.
Biomater Sci ; 12(13): 3374-3388, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38787753

RESUMEN

This study details the design, fabrication, clinical trials' evaluation, and analysis after the clinical application of 3D-printed bone reconstruction implants made of nHAp@PLDLLA [nanohydroxyapatite@poly(L-lactide-co-D,L-lactide)] biomaterial. The 3D-printed formulations have been tested as bone reconstruction Cranioimplants in 3 different medical cases, including frontal lobe, mandibular bone, and cleft palate reconstructions. Replacing one of the implants after 6 months provided a unique opportunity to evaluate the post-surgical implant obtained from a human patient. This allowed us to quantify physicochemical changes and develop a spatial map of osseointegration and material degradation kinetics as a function of specific locations. To the best of our knowledge, hydrolytic degradation and variability in the physicochemical and mechanical properties of the biomimetic, 3D-printed implants have not been quantified in the literature after permanent placement in the human body. Such analysis has revealed the constantly changing properties of the implant, which should be considered to optimize the design of patient-specific bone substitutes. Moreover, it has been proven that the obtained composition can produce biomimetic, bioresorbable and bone-forming alloplastic substitutes tailored to each patient, allowing for shorter surgery times and faster patient recovery than currently available methods.


Asunto(s)
Durapatita , Impresión Tridimensional , Humanos , Durapatita/química , Implantes Absorbibles , Sustitutos de Huesos/química , Cráneo/cirugía , Poliésteres/química , Masculino , Diseño de Prótesis , Materiales Biocompatibles/química , Femenino
6.
Acta Biomater ; 180: 104-114, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583750

RESUMEN

In the field of orthopedic surgery, there is an increasing need for the development of bone replacement materials for the treatment of bone defects. One of the main focuses of biomaterials engineering are advanced bioceramics like mesoporous bioactive glasses (MBG´s). The present study compared the new bone formation after 12 weeks of implantation of MBG scaffolds with composition 82,5SiO2-10CaO-5P2O5-x 2.5SrO alone (MBGA), enriched with osteostatin, an osteoinductive peptide, (MBGO) or enriched with bone marrow aspirate (MBGB) in a long bone critical defect in radius bone of adult New Zealand rabbits. New bone formation from the MBG scaffold groups was compared to the gold standard defect filled with iliac crest autograft and to the unfilled defect. Radiographic follow-up was performed at 2, 6, and 12 weeks, and microCT and histologic examination were performed at 12 weeks. X-Ray study showed the highest bone formation scores in the group with the defect filled with autograft, followed by the MBGB group, in addition, the microCT study showed that bone within defect scores (BV/TV) were higher in the MBGO group. This difference could be explained by the higher density of newly formed bone in the osteostatin enriched MBG scaffold group. Therefore, MBG scaffold alone and enriched with osteostatin or bone marrow aspirate increase bone formation compared to defect unfilled, being higher in the osteostatin group. The present results showed the potential to treat critical bone defects by combining MBGs with osteogenic peptides such as osteostatin, with good prospects for translation into clinical practice. STATEMENT OF SIGNIFICANCE: Treatment of bone defects without the capacity for self-repair is a global problem in the field of Orthopedic Surgery, as evidenced by the fact that in the U.S alone it affects approximately 100,000 patients per year. The gold standard of treatment in these cases is the autograft, but its use has limitations both in the amount of graft to be obtained and in the morbidity produced in the donor site. In the field of materials engineering, there is a growing interest in the development of a bone substitute equivalent. Mesoporous bioactive glass (MBG´s) scaffolds with three-dimensional architecture have shown great potential for use as a bone substitutes. The osteostatin-enriched Sr-MBG used in this long bone defect in rabbit radius bone in vivo study showed an increase in bone formation close to autograft, which makes us think that it may be an option to consider as bone substitute.


Asunto(s)
Sustitutos de Huesos , Vidrio , Andamios del Tejido , Animales , Conejos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Andamios del Tejido/química , Vidrio/química , Porosidad , Diáfisis/patología , Diáfisis/diagnóstico por imagen , Diáfisis/efectos de los fármacos , Microtomografía por Rayos X , Osteogénesis/efectos de los fármacos , Cerámica/química , Cerámica/farmacología , Masculino , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Regeneración Ósea/efectos de los fármacos , Fragmentos de Péptidos
7.
Acta Biomater ; 180: 82-103, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38621599

RESUMEN

The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and ß-Tricalcium Phosphate (ß-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defect. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into ß-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos , Fosfatos de Calcio , Osteoporosis , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Regeneración Ósea/efectos de los fármacos , Osteoporosis/patología , Osteoporosis/terapia , Osteoporosis/tratamiento farmacológico , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Ratas Sprague-Dawley , Selenio/química , Selenio/farmacología , Femenino , Osteogénesis/efectos de los fármacos , Poliésteres/química , Poliésteres/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas , Inyecciones
8.
J Biomed Mater Res B Appl Biomater ; 112(1): e35340, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37929804

RESUMEN

Effective bone substitute biomaterials remain an important challenge in patients with large bone defects. Glass ceramics produced by different synthesis routes may result in changes in the material physicochemical properties and consequently affect the success or failure of the bone healing response. To investigate the differences in the orchestration of the inflammatory and healing process in bone grafting and repair using different glass-ceramic routes production. Thirty male Wistar rats underwent surgical unilateral parietal defects filled with silicate glass-ceramic produced by distinct routes: BS - particulate glass-ceramic produced via the fusion/solidification route, and BG - particulate glass-ceramic produced via the sol-gel route. After 7, 14, and 21 days from biomaterial grafting, parietal bones were removed to be analyzed under H&E and Massons' Trichome staining, and immunohistochemistry for CD206, iNOS, and TGF-ß. Our findings demonstrated that the density of lymphocytes and plasma cells was significantly higher in the BS group at 45, and 7 days compared to the BG group, respectively. Furthermore, a significant increase of foreign body giant cells (FBGCs) in the BG group at day 7, compared to BS was found, demonstrating early efficient recruitment of FBGCs against sol-gel-derived glass-ceramic particulate (BS group). According to macrophage profiles, CD206+ macrophages enhanced at the final periods of both groups, being significantly higher at 45 days of BS compared to the BG group. On the other hand, the density of transformation growth factor beta (TGF-ß) positive cells on 21 days were the highest in BG, and the lowest in the BS group, demonstrating a differential synergy among groups. Noteworthy, TGF-ß+ cells were significantly higher at 21 days of BG compared to the BS group. Glass-ceramic biomaterials can act differently in the biological process of bone remodeling due to their route production, being the sol-gel route more efficient to activate M2 macrophages and specific FBGCs compared to the traditional route. Altogether, these features lead to a better understanding of the effectiveness of inflammatory response for biomaterial degradation and provide new insights for further preclinical and clinical studies involved in bone healing.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Humanos , Ratas , Animales , Masculino , Ensayo de Materiales , Ratas Wistar , Materiales Biocompatibles/química , Regeneración Ósea , Sustitutos de Huesos/química , Cerámica/farmacología , Cerámica/química , Macrófagos , Factor de Crecimiento Transformador beta , Vidrio/química
9.
Minerva Dent Oral Sci ; 73(3): 169-180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38127421

RESUMEN

INTRODUCTION: Regenerative medicine emerged as a promising strategy for addressing bone defects, with several bone grafts currently being used, including autografts, allografts, xenografts and alloplasts. Calcium-based biomaterials (CaXs), a well-known class of synthetic materials, have demonstrated good biological properties and are being investigated for their potential to facilitate bone regeneration. This systematic review evaluates the current clinical applications of CaXs in dentistry for bone regeneration. EVIDENCE ACQUISITION: A comprehensive search was conducted to collect information about CaXs and their applications in the dental field over the last ten years. The search was limited to relevant articles published in peer-reviewed journals. EVIDENCE SYNTHESIS: A total of 72 articles were included in this scoping review, with eight studies related to periodontology, 63 in implantology and three in maxillofacial surgery respectively. The findings suggest that CaXs hold promise as an alternative intervention for minor bone regeneration in dentistry. CONCLUSIONS: Calcium-based biomaterials have shown potential as a viable option for bone regeneration in dentistry. Further research is warranted to fully understand their efficacy and safety in larger bone defects. CaXs represent an exciting avenue for researchers and clinicians to explore in their ongoing efforts to advance regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Regeneración Ósea/efectos de los fármacos , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Calcio/metabolismo , Odontología/métodos , Medicina Regenerativa/métodos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Sustitutos de Huesos/uso terapéutico
10.
Med Sci Monit ; 29: e941112, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37872747

RESUMEN

BACKGROUND The regeneration of bone defects is indicated to restore lost tissue mass and functionality. Ostim®, an absorbable nanocrystalline hydroxyapatite (NCHA) paste, is indicated to enhance bone regeneration in bone defects due to trauma or surgery. This retrospective study of 110 patients with long-bone fracture defects presenting at a single trauma center between 2010 and 2012 aimed to compare outcomes with and without the use of Ostim® absorbable nanocrystalline hydroxyapatite paste. MATERIAL AND METHODS The study encompassed fractures in 110 patients - 55 patients received any defect augmentation (ED) and 55 patients were treated with NCHA augmentation. Fractures were located at the distal radius (66.4%, n=73), proximal humerus (5.5%, n=6), and proximal tibia (28.2%, n=31). Evaluating the clinical follow-up, the study encompassed post-surgery complications (eg, non-unions, infection). Bone healing was evaluated by conventional radiographs. RESULTS Postoperative complications occurred in 45.5% of patients regardless of the treatment (P=1.0). The non-union rate in both groups was 5.5% (n=8, P=1.0), and the risk for infection was lower in the NCHA group (3.6%, ED: n=3, NCHA: n=1, p=0.62). Patients suffered open fractures were treated in the NCHA group (100%, n=7, P=0.003). Radiological assessment demonstrated comparable healing of the fracture border, fracture gap, and articular surface (P>0.05). CONCLUSIONS The findings from this retrospective study support previous studies that have shown Ostim® absorbable nanocrystalline hydroxyapatite paste enhances outcomes and reduces the risk of complications when used to repair bone defects in long-bone fractures in trauma patients. NCHA paste augmentation is suitable for use in traumatic long-bone fractures.


Asunto(s)
Sustitutos de Huesos , Fracturas Óseas , Humanos , Estudios Retrospectivos , Sustitutos de Huesos/uso terapéutico , Sustitutos de Huesos/química , Estudios de Casos y Controles , Fracturas Óseas/tratamiento farmacológico , Fracturas Óseas/cirugía , Durapatita/uso terapéutico , Durapatita/química , Curación de Fractura , Resultado del Tratamiento
11.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446347

RESUMEN

Composites of synthetic bone mineral substitutes (BMS) and biodegradable polyesters are of particular interest for bone surgery and orthopedics. Manufacturing of composite scaffolds commonly uses mixing of the BMS with polymer melts. Melt processing requires a high homogeneity of the mixing, and is complicated by BMS-promoted thermal degradation of polymers. In our work, poly(L-lactide) (PLLA) and poly(ε-caprolactone) (PCL) composites reinforced by commercial ß-tricalcium phosphate (ßTCP) or synthesized carbonated hydroxyapatite with hexagonal and plate-like crystallite shapes (hCAp and pCAp, respectively) were fabricated using injection molding. pCAp-based composites showed advanced mechanical and thermal characteristics, and the best set of mechanical characteristics was observed for the PLLA-based composite containing 25 wt% of pCAp. To achieve compatibility of polyesters and pCAp, reactive block copolymers of PLLA or PCL with poly(tert-butyl ethylene phosphate) (C1 and C2, respectively) were introduced to the composite. The formation of a polyester-b-poly(ethylene phosphoric acid) (PEPA) compatibilizer during composite preparation, followed by chemical binding of PEPA with pCAp, have been proved experimentally. The presence of 5 wt% of the compatibilizer provided deeper homogenization of the composite, resulting in a marked increase in strength and moduli as well as a more pronounced nucleation effect during isothermal crystallization. The use of C1 increased the thermal stability of the PLLA-based composite, containing 25 wt% of pCAp. In view of positive impacts of polyester-b-PEPA on composite homogeneity, mechanical characteristics, and thermal stability, polyester-b-PEPA will find application in the further development of composite materials for bone surgery and orthopedics.


Asunto(s)
Sustitutos de Huesos , Poliésteres , Poliésteres/química , Polietileno , Polímeros , Sustitutos de Huesos/química , Durapatita , Etilenos , Materiales Biocompatibles
12.
Sci Rep ; 13(1): 6646, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095138

RESUMEN

Bioactive glass (BAG) is a bone substitute that can be used in orthopaedic surgery. Following implantation, the BAG is expected to be replaced by bone via bone growth and gradual degradation of the BAG. However, the hydroxyapatite mineral forming on BAG resembles bone mineral, not providing sufficient contrast to distinguish the two in X-ray images. In this study, we co-registered coded-excitation scanning acoustic microscopy (CESAM), scanning white light interferometry (SWLI), and scanning electron microscopy with elemental analysis (Energy Dispersive X-ray Spectroscopy) (SEM-EDX) to investigate the bone growth and BAG reactions on a micron scale in a rabbit bone ex vivo. The acoustic impedance map recorded by the CESAM provides high elasticity-associated contrast to study materials and their combinations, while simultaneously producing a topography map of the sample. The acoustic impedance map correlated with the elemental analysis from SEM-EDX. SWLI also produces a topography map, but with higher resolution than CESAM. The two topography maps (CESAM and SWLI) were in good agreement. Furthermore, using information from both maps simultaneously produced by the CESAM (acoustic impedance and topography) allowed determining regions-of-interest related to bone formation around the BAG with greater ease than from either map alone. CESAM is therefore a promising tool for evaluating the degradation of bone substitutes and the bone healing process ex vivo.


Asunto(s)
Sustitutos de Huesos , Microscopía Acústica , Animales , Conejos , Sustitutos de Huesos/química , Vidrio/química , Osteogénesis , Interferometría , Microscopía Electrónica de Rastreo
13.
J Biomed Mater Res A ; 111(3): 367-377, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36269049

RESUMEN

Use of bioresorbable artificial bone substitutes is anticipated for bone augmentation in dental implant surgery because they are relatively economical and uniform in quality compared to heterogeneous bone. In this study, a new shapable, rubbery, bioresorbable bone substitute was developed. The material was prepared by ultrasonically dispersing hydroxyapatite (HA) particles throughout a poly (caprolactone-co-lactide) (PCLLA) rubbery matrix. Physiochemical properties of the bone substitute including its composition, deformability, anti-collapse ability, degradation behavior, and in vitro and in vivo osteogenic ability were evaluated. Results revealed that HA/PCLLA, which consists of homogeneously dispersed HA particles and a rubbery matrix composed of PCLLA, possesses a deformable capacity. The result of the mass retention rate of the material indicated an excellent durability in an aqueous environment. Further, the effects of HA/PCLLA on cell functions and bone-regenerated performance were evaluated in vitro and in vivo. The results showed that HA/PCLLA had enhanced proliferative capacity, and ability to undergo osteogenic differentiation and mineralization in vitro. It was also found that HA/PCLLA had an appropriate degradation rate to induce consecutive new bone formation without collapse at the early stage in vivo, as well as the ability to maintain the contour of the bone-grafting area, which is comparable to the deproteinized bovine bone mineral. These results indicated that HA/PCLLA is a promising bioresorbable bone substitute with properties that meet clinical requirements, including deformability, resistance to collapse in an aqueous environment, appropriate early-stage degradation rate, biocompatibility, osteogenic bioactivity and the capacity to regenerate bone tissue with favorable contour.


Asunto(s)
Sustitutos de Huesos , Durapatita , Animales , Bovinos , Durapatita/farmacología , Durapatita/química , Sustitutos de Huesos/farmacología , Sustitutos de Huesos/química , Osteogénesis , Implantes Absorbibles , Poliésteres/farmacología , Poliésteres/química
14.
J Biomed Mater Res B Appl Biomater ; 111(2): 382-391, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053824

RESUMEN

Calcium sulfate, an injectable and biodegradable bone-void filler, is widely used in orthopedic surgery. Based on clinical experience, bone-defect substitutes can also serve as vehicles for the delivery of drugs, for example, antibiotics, to prevent or to treat infections such as osteomyelitis. However, antibiotic additions change the characteristics of calcium sulfate cement. Moreover, high-dose antibiotics may also be toxic to bony tissues. Accordingly, cefazolin at varying weight ratios was added to calcium sulfate samples and characterized in vitro. The results revealed that cefazolin changed the hydration reaction and prolonged the initial setting times of calcium sulfate bone cement. For the crystalline structure identification, X-ray diffractometer revealed that cefazolin additive resulted in the decrease of peak intensity corresponding to calcium sulfate dihydrate which implying incomplete phase conversion of calcium sulfate hemihydrate. In addition, scanning electron microscope inspection exhibited cefazolin changed the morphology and size of the crystals greatly. A relatively higher amount of cefazolin additive caused a faster degradation and a lower compressive strength of calcium sulfate compared with those of uploaded samples. Furthermore, the extract of cefazolin-impregnated calcium sulfate impaired cell viability, and caused the death of osteoblast-like cells. The results of this study revealed that the cefazolin additives prolonged setting time, impaired mechanical strength, accelerated degradation, and caused cytotoxicity of the calcium sulfate bone-void filler. The aforementioned concerns should be considered during intra-operative applications.


Asunto(s)
Sustitutos de Huesos , Sulfato de Calcio , Sulfato de Calcio/farmacología , Sulfato de Calcio/química , Cefazolina/farmacología , Sustitutos de Huesos/farmacología , Sustitutos de Huesos/química , Fuerza Compresiva , Cementos para Huesos/farmacología , Cementos para Huesos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Excipientes
15.
Biomater Adv ; 141: 213119, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36152523

RESUMEN

Additive Manufactured (AM) Polyether-ether-ketone (PEEK) orthopaedic implants offer new opportunities for bone substitutes. However, owing to its chemical inertness, the integration between PEEK implants and soft tissue represents a major challenge threatening the early success of the PEEK implants. Here we investigated the influence of hydroxyapatite (HA) fillers and porous structure of AM HA/PEEK scaffolds on the integration with soft tissue through in-vitro cellular experiments and in-vivo rabbit experiments. Among the animal experiments, HA/PEEK composite scaffolds with HA contents of 0, 20 wt%, 40 wt% and pore sizes of 0.8 mm, 1.6 mm were manufactured by fused filament fabrication. The results indicated that HA promoted the proliferation and adhesion of myofibroblasts on PEEK-based composites by releasing Ca2+ to active FAK and its downstream proteins, while the surface morphology of the scaffolds was also roughened by the HA particles, both of which led to the tighter adhesion between HA/PEEK scaffolds and soft tissue in-vivo. The macroscopic bonding force between soft tissue and scaffolds was dominated by the pore size of the scaffolds but was hardly affected by neither the HA content and nor the surface morphology. Scaffolds with larger pore size bonded more strongly to the soft tissue, and the maximum bonding force reached to 5.61 ± 2.55 N for 40 wt% HA/PEEK scaffolds with pore size of 1.6 mm, which was higher than that between natural bone and soft tissue of rabbits. Although the larger pore size and higher HA content of the PEEK-based scaffolds facilitated the bonding with the soft tissue, the consequent outcome of reduced mechanical properties has to be compromised in the design of the porous PEEK-based composite implants. The present study provides engineering-accessible synergistic strategies on material components and porous architecture of AM PEEK orthopaedic implants for improving the integration with soft tissue.


Asunto(s)
Sustitutos de Huesos , Durapatita , Animales , Benzofenonas , Sustitutos de Huesos/química , Durapatita/química , Éteres , Cetonas/química , Polietilenglicoles/química , Polímeros , Porosidad , Conejos
16.
Biomater Adv ; 136: 212788, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35929320

RESUMEN

Bone defects of the craniofacial skeleton are often associated with aesthetic and functional impairment as well as loss of protection to intra- and extracranial structures. Solid titanium plates and individually adapted bone cements have been the materials of choice, but may lead to foreign-body reactions and insufficient osseointegration. In contrast, porous scaffolds are thought to exhibit osteoconductive properties to support bone ingrowth. Here, we analyse in critical size defects of the calvaria in sheep whether different bone replacement materials may overcome those remaining challenges. In a critical size defect model, bilateral 20 × 20 × 5-mm craniectomies were performed on either side of the sagittal sinus in 24 adult female blackheaded sheep. Bony defects were randomised to one of five different bone replacement materials (BRMs): titanium scaffold, biodegradable poly(d,l-lactic acid) calcium carbonate scaffold (PDLLA/CC), polyethylene 1 (0.71 mm mean pore size) or 2 (0.515 mm mean pore size) scaffolds and polymethyl methacrylate (PMMA)-based bone cement block. Empty controls (n = 3) served as references. To evaluate bone growth over time, three different fluorochromes were administered at different time points. At 3, 6 and 12 months after surgery, animals were sacrificed and the BRMs and surrounding bone analysed by micro-CT and histomorphometry. The empty control group verified that the calvaria defect in this study was a reliable critical size defect model. Bone formation in vivo was detectable in all BRMs after 12 months by micro-CT and histomorphometric analysis, except for the non-porous PMMA group. A maximum of bone formation was detected in the 12-months group for titanium and PDLLA/CC. Bone formation in PDLLA/CC starts to increase rapidly between 6 and 12 months, as the BRM resorbs over time. Contact between bone and BRM influenced bone formation inside the BRM. Empty controls exhibited bone formation solely at the periphery. Overall, porous BRMs offered bone integration to different extent over 12 months in the tested calvaria defect model. Titanium and PDLLA/CC scaffolds showed remarkable osseointegration properties by micro-CT and histomorphometric analysis. PDLLA/CC scaffolds degraded over time without major residues. Pore size influenced bone ingrowth in polyethylene, emphasising the importance of porous scaffold structure.


Asunto(s)
Sustitutos de Huesos , Animales , Cementos para Huesos/química , Sustitutos de Huesos/química , Femenino , Polietilenos , Polimetil Metacrilato/química , Ovinos , Cráneo/diagnóstico por imagen , Titanio
17.
J Biomed Mater Res B Appl Biomater ; 110(8): 1862-1875, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35233920

RESUMEN

Bioreactors have been used for bone graft engineering in pre-clinical investigations over the past 15 years. The ability of bioreactor-incubated bone marrow nuclear cells (BMNCs) to enhance bone-forming potential varies significantly, and the three-dimensional (3D) distribution of BMNCs within the scaffold is largely unknown. The aims of this study were (1) to investigate the efficacy of a carbonated hydroxyapatite (CHA) with/without BMNCs on spine fusion rate and fusion mass microarchitecture using a highly challenging two-level posterolateral spine fusion without instrumentation; and (2) to evaluate 3D distribution of BMNCs within scaffolds characterized by immunohistochemistry. Fusion rate and fusion mass were quantified by micro-CT, microarchitectural analysis, and histology. While the homogenous 3D distribution of BMNCs was not observed, BMNCs were found to migrate towards a substitute core. In the autograft group, the healing rate was 83.3%, irrespective of the presence of BMNCs. In the CHA group, also 83.3% was fused in the presence of BMNCs, and 66.7% fused without BMNCs. A significant decrease in the fusion mass porosity (p = .001) of the CHA group suggested the deposition of mineralized bone. The autograft group revealed more bone, thicker trabeculae, and better trabecular orientation but less connection compared to the CHA group. Immunohistochemistry confirmed the ability of bioreactors to incubate a large-sized substitute coated with viable BMNCs with the potential for proliferation and differentiation. These findings suggested that a bioreactor-activated substitute is comparable to autograft on spine fusion and that new functional bone regeneration could be achieved by a combination of BMNCs, biomaterials, and bioreactors.


Asunto(s)
Sustitutos de Huesos , Fusión Vertebral , Animales , Reactores Biológicos , Médula Ósea , Células de la Médula Ósea , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Trasplante Óseo/métodos , Ovinos , Fusión Vertebral/métodos
18.
Comput Math Methods Med ; 2022: 6088398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132331

RESUMEN

BACKGROUND: Short-track speed skating (STSS) is an extreme sport in pursuit of extreme speed and explosive force. In such a sport, once athletes fall down, they are susceptible to serious cervical spine injury (CSI) under the inertia of high-velocity movement. Nanohydroxyapatite/polyamide 66 (NHP66) bioactive cage is a high-tech product of nanotechnology in the medical field in recent years. With a structure similar to that of human cortical bone, NHP66 bioactive cage has extremely high toughness and strength, which tailors to the needs of STSS. OBJECTIVE: This study mainly analyzed the therapeutic effect of NHP66 on patients with CSI in STSS, aiming to provide new opportunities for the treatment of this patient population. METHODS: A total of 51 patients with CSI treated in our hospital were enrolled, including 19 cases of short-track speed skaters (observation group) and 32 cases of car accidents, falls from heights, or collision injuries (control group). The relevant surgical indicators (operation time, intraoperative blood loss, etc.), the incidence of adverse reactions, the Cobb angle of cervical lordosis before and after surgery, and the fusion segment height of the cage were observed and compared between the two groups. Postoperative pain was evaluated by the visual analog scale (VAS), improvement of spinal cord injury was assessed by the American Spinal Cord Injury Association (ASIA) Impairment Scale, and bone fusion, bone subsidence, and other motor functions were assessed by the Japanese Orthopaedic Association (JOA) score rating system. RESULTS: The operation time, intraoperative blood loss, and incidence of adverse reactions in the observation group were significantly lower than those in the control group. The Cobb angle of cervical lordosis and the fusion segment height of cage increased significantly higher in both groups after surgery. In addition, the VAS scores of the observation group 2 h and 3 d after operation were significantly lower than those of the control group. In terms of improvement of spinal cord injury, ASIA and JOA scores in the observation group were significantly higher than those before treatment and in the control group. There was no significant difference in bone fusion activity between the two groups. CONCLUSIONS: In this study, it is found through experiments that NHP66 has higher safety and application value than autogenous iliac bone, confirming that NHP66 can achieve significant results as a cage for anterior cervical decompression and iliac bone graft fusion and internal fixation in short-track speed skaters after CSI.


Asunto(s)
Traumatismos en Atletas/cirugía , Sustitutos de Huesos , Vértebras Cervicales/lesiones , Vértebras Cervicales/cirugía , Patinación , Fracturas de la Columna Vertebral/cirugía , Adulto , Sustitutos de Huesos/administración & dosificación , Sustitutos de Huesos/química , Biología Computacional , Descompresión Quirúrgica/efectos adversos , Descompresión Quirúrgica/métodos , Durapatita/administración & dosificación , Durapatita/química , Femenino , Fijación Interna de Fracturas/efectos adversos , Fijación Interna de Fracturas/métodos , Humanos , Masculino , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología , Nylons/química , Adulto Joven
19.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163120

RESUMEN

Injectable bone substitutes (IBS) are increasingly being used in the fields of orthopedics and maxillofacial/oral surgery. The rheological properties of IBS allow for proper and less invasive filling of bony defects. Vaterite is the most unstable crystalline polymorph of calcium carbonate and is known to be able to transform into hydroxyapatite upon contact with an organic fluid (e.g., interstitial body fluid). Two different concentrations of hydrogels based on poly(ethylene glycol)-acetal-dimethacrylat (PEG-a-DMA), i.e., 8% (w/v) (VH-A) or 10% (w/v) (VH-B), were combined with vaterite nanoparticles and implanted in subcutaneous pockets of BALB/c mice for 15 and 30 days. Explants were prepared for histochemical staining and immunohistochemical detection methods to determine macrophage polarization, and energy-dispersive X-ray analysis (EDX) to analyze elemental composition was used for the analysis. The histopathological analysis revealed a comparable moderate tissue reaction to the hydrogels mainly involving macrophages. Moreover, the hydrogels underwent a slow cellular infiltration, revealing a different degradation behavior compared to other IBS. The immunohistochemical detection showed that M1 macrophages were mainly found at the material surfaces being involved in the cell-mediated degradation and tissue integration, while M2 macrophages were predominantly found within the reactive connective tissue. Furthermore, the histomorphometrical analysis revealed balanced numbers of pro- and anti-inflammatory macrophages, demonstrating that both hydrogels are favorable materials for bone tissue regeneration. Finally, the EDX analysis showed a stepwise transformation of the vaterite particle into hydroxyapatite. Overall, the results of the present study demonstrate that hydrogels including nano-vaterite particles are biocompatible and suitable for bone tissue regeneration applications.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos/farmacología , Carbonato de Calcio/farmacología , Hidrogeles/administración & dosificación , Macrófagos/inmunología , Cicatrización de Heridas , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Sustitutos de Huesos/química , Carbonato de Calcio/química , Microanálisis por Sonda Electrónica , Hidrogeles/química , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Polietilenglicoles/química , Espectrometría por Rayos X
20.
J Mater Sci Mater Med ; 33(1): 2, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940930

RESUMEN

Anterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the deepening research on metal materials, the properties of these materials have been developed from being biologically inert to having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized. Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed. Fig.a.b.c.d.e.f.g As a pre-selected image for the cover, I really look forward to being selected. Special thanks to you for your comments.


Asunto(s)
Materiales Biocompatibles/síntesis química , Investigación Biomédica/tendencias , Impresión Tridimensional , Diseño de Prótesis/tendencias , Fusión Vertebral/instrumentación , Animales , Materiales Biocompatibles/química , Investigación Biomédica/métodos , Sustitutos de Huesos/síntesis química , Sustitutos de Huesos/química , Trasplante Óseo/instrumentación , Trasplante Óseo/métodos , Trasplante Óseo/tendencias , Humanos , Impresión Tridimensional/tendencias , Prótesis e Implantes , Diseño de Prótesis/métodos , Fusión Vertebral/métodos , Fusión Vertebral/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA