Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Org Lett ; 26(20): 4302-4307, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38728049

RESUMEN

A plant used in an Indonesian traditional herbal medicine as a diabetes treatment and known locally as "Jampu Salo" was collected on Sulawesi Island, Indonesia. It was identified as Syzygium oblanceolatum (C. B. Rob.) Merr. (Myrtaceae) and found for the first time in Sulawesi; it was previously reported only in the eastern Philippines and Borneo. A phytochemical study of S. oblanceolatum led to the isolation of three unprecedented meroterpenoids, syzygioblanes A-C (1-3, respectively). These compounds might be biosynthesized through [4+2] cycloaddition of various germacrane-based cyclic sesquiterpenoids with the flavone desmethoxymatteucinol to form a spiro skeleton. The unique and complex structures were elucidated by microcrystal electron diffraction analysis in addition to general analytical techniques such as high-resolution mass spectrometry, various nuclear magnetic resonance methods, and infrared spectroscopy. Synchrotron X-ray diffraction and calculations of electronic circular dichroism spectra helped to determine the absolute configurations. The newly isolated compounds exhibited collateral sensitivity to more strongly inhibit the growth of a multidrug resistant tumor cell line compared to a chemosensitive tumor cell line.


Asunto(s)
Sesquiterpenos , Syzygium , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Syzygium/química , Estructura Molecular , Indonesia , Humanos , Flavanonas/química , Flavanonas/farmacología , Flavanonas/aislamiento & purificación , Medicina Tradicional , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650159

RESUMEN

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Asunto(s)
Antiinflamatorios , Antioxidantes , Asma , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Glutatión Peroxidasa , Glutatión , Interleucina-4 , Pulmón , Malondialdehído , Extractos Vegetales , Ratas Wistar , Syzygium , Animales , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Syzygium/química , Masculino , Asma/tratamiento farmacológico , Asma/inducido químicamente , Asma/metabolismo , Asma/patología , Líquido del Lavado Bronquioalveolar/química , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo , Interleucina-4/metabolismo , Interleucina-4/sangre , Malondialdehído/metabolismo , Ovalbúmina , Catalasa/metabolismo , Ratas , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Agua/química
3.
PLoS One ; 19(3): e0298986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551975

RESUMEN

Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1ß. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1ß, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.


Asunto(s)
Enfermedad de Parkinson , Syzygium , Humanos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Paraquat/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Syzygium/química , Acetilcolinesterasa/metabolismo , China , Factor de Necrosis Tumoral alfa/metabolismo , Roedores , Etnicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fenoles/farmacología , Flavonoides/farmacología , ARN Mensajero/metabolismo , Estrés Oxidativo
4.
Int J Biol Macromol ; 263(Pt 1): 130286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382795

RESUMEN

This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.


Asunto(s)
Quitosano , Aceites Volátiles , Syzygium , Quitosano/química , Aceites Volátiles/farmacología , Aceite de Clavo/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Syzygium/química , Espectroscopía Infrarroja por Transformada de Fourier , Permeabilidad , Embalaje de Alimentos/métodos , Vapor
5.
Food Chem ; 440: 138245, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159320

RESUMEN

This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.


Asunto(s)
Aceites Volátiles , Syzygium , Aceite de Clavo/química , Aceites Volátiles/química , Proteínas de Soja/química , Alcohol Polivinílico/química , Syzygium/química , Emulsiones/química , Amiloide , Espectroscopía Infrarroja por Transformada de Fourier , Embalaje de Alimentos/métodos
6.
J Physiol Pharmacol ; 74(5)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38085521

RESUMEN

Clove plant (Syzygium aromaticum) is one of the Myrtaceae family. It's a common flavor in food and the traditional medicine. The study's objective was to ascertain whether the clove bud aqueous extract (CAE) and CAE + nanosilver have any biological effects on immune cells and HT-29 colon cancer cell line. Nanosilver was produced through green synthesis approach using CAE. Produced nanosilver was characterized via electron microscope (scanning, SEM) and ultraviolet-visible spectroscopy. CAE and CAE + nanosilver were examined for their active biomolecules using FTIR analysis, p53 contents using real-time PCR, apoptosis and cell cycle arrest power on HT-29 cancer cell line via flow cytometerty and immunomodulatory potential utilizing MTT assay. Results cleared that a spherical nanosilver with a diameter range of 53 nm was formed by CAE. There were several active biomolecules in CAE and CAE + nanosilver. CAE and CAE + nanosilver increased the p53 protein expression and apoptotic cell number in HT-29 colon cancer cells. CAE and CAE + nanosilver could arrest HT-29 cells at the phase G2/M. CAE and CAE + nanosilver stimulated quiescent and PHA-pre-treated splenic cells at higher concentrations, and CAE suppressed quiescent splenic cell when diluted. In conclusion, the safe edible Syzygium aromaticum plant can be utilized to make anti-tumor agent, essentially for colon tumor. As Syzygium aromaticum plant could stimulate immune cells, it can be used as immune-stimulatory agent that can help fight tumor and tumor development.


Asunto(s)
Neoplasias del Colon , Nanopartículas del Metal , Syzygium , Humanos , Plata/farmacología , Plata/química , Syzygium/química , Proteína p53 Supresora de Tumor , Extractos Vegetales/farmacología , Extractos Vegetales/química
7.
Chem Biodivers ; 20(12): e202300823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917799

RESUMEN

Myrtaceae is one of the most diverse and abundant botanical families, exhibiting wide diversity in the chemical composition of essential oils (EOs). EOs have various biotechnological applications such as controlling the populations of organisms that negatively impact humans. This study aimed to extract EOs from Myrtaceae species, chemically characterize them, and evaluate their larvicidal and fungicidal effects. EOs were extracted from the leaves of Eugenia brasiliensis, Eugenia uniflora, Psidium cattleyanum, Psidium guajava, and Syzygium cumini by hydrodistillation for 3 h and characterized by chromatographic analysis. Larvaes of Aedes aegypti and colonies of Fusarium oxysporum were subjected to increasing EO concentrations to determine the larvicidal and fungicidal potential. The EOs of Eugenia and Psidium species are primarily composed of sesquiterpenes (>80 %), whereas S. cumini EO is rich in monoterpenes (more than 60 %). The Eugenia species had similar amounts of oxygenated monoterpenes, which may explain their higher larvicidal potential compared to other species, with CL50 of 86.68 and 147.46 PPM, respectively. In addition to these two study species, S. cumini showed a high inhibition of fungal growth, with more than 65 % inhibition. We demonstrated that the actions of five EOs from Myrtaceae with different biological activities are associated with chemical diversity.


Asunto(s)
Aedes , Eugenia , Insecticidas , Myrtaceae , Aceites Volátiles , Psidium , Syzygium , Humanos , Animales , Aceites Volátiles/química , Syzygium/química , Psidium/química , Hojas de la Planta/química , Monoterpenos/análisis , Insecticidas/química , Larva
8.
Asian Pac J Cancer Prev ; 24(10): 3403-3409, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898844

RESUMEN

BACKGROUND: Candida krusei is the cause of the fungal infection candidiasis, which has a high mortality rate. Intrinsic resistance to fluconazole can cause the failure of Krusei candidiasis treatment. Therefore, it is necessary to find alternative drugs to eliminate the fungus. Extracts of Syzygium aromaticum and Alpinia purpurata have been proven to be alternative solutions for treating Candida krusei resistance. OBJECTIVE: This study aims to explore the active compounds Syzygium aromaticum and Alpinia purpurata as treatments against Candida krusei through bioactivity tests, molecular modeling, and toxicity tests. METHODS: Determination of antifungal activity with the agar well diffusion and microbroth dilution method. Molecular modeling was conducted using the following software: Marvin Sketch, LigandScout  4.4.5, AutoDock ver 4.2.6, PyMOL, LigPlus, MOE ver 2008. RESULT: Bioactivity test results of the two natural extracts against C. krusei ATCC 6258, it was found that the S. aromaticum and A. purpurata extracts have MIC50 values of 0.031 µg/mL and 1.435x105 µg/mL. The molecular modeling found that the compounds Benzotriazole, 1-(4-methyl-3-nitrobenzoyl)-, 1,3,4-Eugenol Acetate, Stigmasta-5,22-dien-3-ol, acetate (3 beta)- and Farnesyl acetate from the two natural extracts, interacts with the active site of the enzyme lanosterol-14-α-demethylase with a binding energy of -8.91, -6.04, -13.53, and -7.15 kcal/mol. The oral acute toxicity test of S. aromaticum and A. purpurata extracts proved that the LD50 was >6000 mg/kg BW and >8000 mg/kg BW. The acute dermal toxicity test of the two extracts showed that the LD50 was >6000 mg/kg BW. CONCLUSION: S. aromaticum and A. purpurata extracts have been proven to be alternative solutions for treating Candida krusei resistance.


Asunto(s)
Alpinia , Candidiasis , Syzygium , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Syzygium/química , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Pruebas de Toxicidad , Acetatos
9.
Int J Biol Macromol ; 249: 126091, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37543269

RESUMEN

In this study, the formation of clove essential oil loaded chitosan nanocapsules (CEO/CS-NCs) was achieved by the ionotropic gelation technology. The spherical shape and core-shell structure of CEO/CS-NCs were characterized by SEM, TEM, and FT-IR. CEO/CS-NCs have a reasonable encapsulation efficiency rate of 39 % and an average size of 253.63 nm. The simulated release of CEO/CS-NCs in a citric acid buffer solution shows that the nano-encapsulation technology could control the sustained release of clove essential oil (CEO). The shelf life of untreated blueberries at room temperature is only about 3 days, while CEO/CS-NCs combined with low-temperature storage can extend the shelf life to about 12 days. The quality characteristic of blueberries, including fruit firmness and moisture content, were effectively maintained, and the rotting rate of blueberries was significantly reduced with CEO/CS-NCs. As a natural preservative, CEO/CS-NCs have a good antioxidant activity close to the commercial antioxidant butylated hydroxytoluene (BHT) and a high antibacterial activity against pathogenic bacteria (PB) isolated from naturally occurring blueberries. Therefore, this study not only gives a theoretical basis for the development of CEO as a commercial preservative but also provides a practical solution to solve the protection challenge of preserving blueberries.


Asunto(s)
Arándanos Azules (Planta) , Quitosano , Nanocápsulas , Nanopartículas , Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Quitosano/química , Syzygium/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Aceite de Clavo/farmacología , Aceite de Clavo/química , Antioxidantes/farmacología , Antioxidantes/química
10.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570781

RESUMEN

In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately 32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately 225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion against S. aureus significantly decreased the development of biofilm compared with CL-emulsion. Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion. Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, antifungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical applications after extensive studies in vivo.


Asunto(s)
Antibacterianos , Antifúngicos , Antineoplásicos , Biopelículas , Aceites Volátiles , Syzygium , Biopelículas/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Emulsiones , Syzygium/química , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión , Células Hep G2 , Células MCF-7 , Humanos , Apoptosis , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Sistema de Administración de Fármacos con Nanopartículas , Nanoestructuras/química , Staphylococcus aureus/efectos de los fármacos , Hongos/efectos de los fármacos
11.
J Zhejiang Univ Sci B ; 24(7): 574-586, 2023 Jul 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37455135

RESUMEN

Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)|-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:|3.94:|4.45:|8.56:|8.86:|30.82:|39.78:|1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)|-Araf-(1→, →3)|-Galp-(1→, →3)|-Araf-|(1→, and →6)|-Galp-|(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.


Asunto(s)
Syzygium , Humanos , Syzygium/química , Uretano/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Oxidativo , Glutatión/farmacología , Hepatocitos , Polisacáridos/farmacología
12.
Molecules ; 28(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049819

RESUMEN

Sustained inflammatory responses have been implicated in various neurodegenerative diseases (NDDs). Cleistocalyx nervosum var. paniala (CN), an indigenous berry, has been reported to exhibit several health-beneficial properties. However, investigation of CN seeds is still limited. The objective of this study was to evaluate the protective effects of ethanolic seed extract (CNSE) and mechanisms in BV-2 mouse microglial cells using an inflammatory stimulus, TNF-α. Using LC-MS, ferulic acid, aurentiacin, brassitin, ellagic acid, and alpinetin were found in CNSE. Firstly, we examined molecular docking to elucidate its bioactive components on inflammation-related mechanisms. The results revealed that alpinetin, aurentiacin, and ellagic acid inhibited the NF-κB activation and iNOS function, while alpinetin and aurentiacin only suppressed the COX-2 function. Our cell-based investigation exhibited that cells pretreated with CNSE (5, 10, and 25 µg/mL) reduced the number of spindle cells, which was highly observed in TNF-α treatment (10 ng/mL). CNSE also obstructed TNF-α, IL-1ß, and IL-6 mRNA levels and repressed the TNF-α and IL-6 releases in a culture medium of BV-2 cells. Remarkably, CNSE decreased the phosphorylated forms of ERK, p38MAPK, p65, and IκB-α related to the inhibition of NF-κB binding activity. CNSE obviously induced HO-1 protein expression. Our findings suggest that CNSE offers good potential for preventing inflammatory-related NDDs.


Asunto(s)
FN-kappa B , Syzygium , Ratones , Animales , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Microglía , Syzygium/química , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Frutas/metabolismo , Ácido Elágico/farmacología , Simulación del Acoplamiento Molecular , Línea Celular , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Semillas/metabolismo , Lipopolisacáridos/farmacología
13.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985392

RESUMEN

Viral infections are spread all around the world. Although there are available therapies, their safety and effectiveness are constrained by their adverse effects and drug resistance. Therefore, new natural antivirals have been used such as essential oils, which are natural products with promising biological activity. Accordingly, the present study aimed to identify the components of clove (Syzygium aromaticum) essential oil (EOCa) and verify its antioxidant and antiviral activity. The oil was analyzed using GC/MS, and the antioxidant capacity was evaluated as a function of the radical scavenging activity. A plaque reduction test was used to measure the antiviral activity against herpes simplex virus (HSV-1), hepatitis A virus (HAV), and an adenovirus. GC/MS analysis confirmed the presence of eugenol as the main component (76.78%). Moreover, EOCa had powerful antioxidant activity with an IC50 of 50 µg/mL. The highest antiviral potential was found against HAV, with a selectivity index (SI) of 14.46, while showing poor selectivity toward HSV-1 with an SI value of 1.44. However, no relevant effect was detected against the adenovirus. The antiviral activity against HAV revealed that its effect was not related to host cytotoxicity. The findings imply that EOCa can be utilized to treat diseases caused by infections and free radicals.


Asunto(s)
Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Syzygium/química , Antioxidantes/farmacología , Antioxidantes/química , Antivirales/farmacología , Eugenol/química , Aceite de Clavo/farmacología , Aceite de Clavo/química
14.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985419

RESUMEN

Eugenol essential oil (EEO) is the major component in aromatic extracts of Syzygium aromaticum (clove) and has several biological properties, such as antibacterial, antioxidant, and anti-inflammatory activities, as well as controlling vomiting, coughing, nausea, flatulence, diarrhea, dyspepsia, stomach distension, and gastrointestinal spasm pain. It also stimulates the nerves. Therefore, the aim of this study was to extract and purify EEO from clove buds and assess its ability to combat resistant Helicobacter pylori. Additionally, EEO's anti-inflammatory activity and its ability to suppress H. pylori biofilm formation, which is responsible for antibiotic resistance, was also investigated. Syzygium aromaticum buds were purchased from a local market, ground, and the EEO was extracted by using hydro-distillation and then purified and chemically characterized using gas chromatography-mass spectrometry (GC-MS). A disk-diffusion assay showed that Helicobacter pylori is sensitive to EEO, with an inhibition zone ranging from 10 ± 06 to 22 ± 04 mm. The minimum inhibition concentration (MIC) of EEO ranged from 23.0 to 51.0 µg/mL against both Helicobacter pylori clinical isolates and standard strains. In addition, EEO showed antibiofilm activity at 25 µg/mL and 50 µg/mL against various Helicobacter pylori strains, with suppression percentages of 49.32% and 73.21%, respectively. The results obtained from the anti-inflammatory assay revealed that EEO possesses strong anti-inflammatory activity, with human erythrocyte hemolysis inhibition percentages of 53.04, 58.74, 61.07, and 63.64% at concentrations of 4, 8, 16, and 32 µg/L, respectively. GC-MS analysis revealed that EEO is a major component of Syzygium aromaticum when extracted with a hydro-distillation technique, which was confirmed by its purification using a chemical separation process. EEO exhibited antibacterial action against resistant Helicobacter pylori strains, as well as antibiofilm and anti-inflammatory activities, and is a promising natural alternative in clinical therapy.


Asunto(s)
Helicobacter pylori , Aceites Volátiles , Syzygium , Humanos , Aceites Volátiles/química , Eugenol/farmacología , Aceite de Clavo/farmacología , Syzygium/química , Antibacterianos/química , Antiinflamatorios/farmacología , Biopelículas
15.
Int J Biol Macromol ; 233: 123512, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739047

RESUMEN

The objective of current study was to develop Poly(hydroxybutyrate) (PHB) based active packaging film with long lasting antimicrobial potential in food-packaging applications. For developing such films, PHB was incorporated with poly(ethylene glycol) (PEG) as a plasticizer, nano-silica (n-Si) as strengthening material and clove essential oil (CEO) as an antimicrobial agent. These solvent-casted films with varying concentration of n-Si (0.5, 1, 1.5, 2 %) and 30 % CEO of total polymer matrix weight i.e., PHB/PEG (90/10) were prepared and studied on the basis of morphological, mechanical, thermal, degradation and antimicrobial behaviours. The presence of CEO and n-Si was confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to investigate homogeneous dispersal of n-Si in polymer matrix. PHB/PEG/CEO/Si 1.0 film was selected as optimized one after mechanical testing and therefore further carried for antimicrobial testing. This selected film extended the shelf-life of brown bread up to 10 days comparable to bread wrapped in polyethylene. This revealed that PHB/PEG/CEO/Si 1.0 exhibited superior antibacterial activity against the food borne microbes i.e., Escherichia coli, Staphylococcus aureus and Aspergillus niger. Our findings indicate that this film improved the shelf-life of packaged bread and has promising features for active food packaging.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceite de Clavo/farmacología , Syzygium/química , Pan , Antiinfecciosos/farmacología , Antiinfecciosos/química , Polímeros , Embalaje de Alimentos/métodos , Hidroxibutiratos
16.
Physiol Rep ; 11(2): e15584, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695659

RESUMEN

The dried flower bud of Syzygium aromaticum L. (S. aromaticum) (Myrtaceae), cloves, have been used for their analgesic and anti-inflammatory activities. Peritoneal adhesion (PA) is the most common complication of abdominal and pelvic surgeries, which causes significant adverse effects and severe economic burden. The present study aimed to evaluate the preventive effect of S. extract (SAE) on PA formation in a rat model. Male Wistar 8-week-old rats were randomly divided into sham, control (received vehicle), and treatment (0.25%, 0.5%, and 1% w/v of SAE) groups. The adhesion and related factors were examined using the Nair scoring system and immunological and biochemical kits for the levels of inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor (TNF)-α], growth factors [transforming growth factor (TGF)-ß1 and vascular endothelial growth factor (VEGF)], oxidative [nitric oxide (NO) and malondialdehyde (MDA)], and anti-oxidative [glutathione (GSH)] factors. Our results figured out that the adhesion score and IL-6, TNF-α, TGF-ß1, VEGF, NO, and MDA levels were significantly increased, but the GSH level was decreased in the control group compared to the sham group (p < 0.001-0.05). On the other hand, the 0.25% SAE group had a lower adhesion score, and IL-6, TNF-α, TGF-ß1, VEGF, NO, and MDA levels were significantly decreased compared with the vehicle group, and the level of GSH was increased (p < 0.001-0.05). SAE could efficiently reduce adhesion score and regulate inflammatory cytokines, oxidative and anti-oxidative factors, and biomarkers of fibrosis and angiogenesis. Therefore, clove extract can be considered a potential candidate for PA management.


Asunto(s)
Citocinas , Syzygium , Animales , Masculino , Ratas , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Fibrosis , Glutatión/metabolismo , Interleucina-6/metabolismo , Estrés Oxidativo , Ratas Wistar , Syzygium/química , Syzygium/metabolismo , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Espectrometría de Masas
17.
Pharmacol Res ; 187: 106569, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427798

RESUMEN

Phenolipids are characteristic phytochemicals of Syzygium genus. However, the antidiabetic potential and underlying molecular mechanism of these components are not fully elucidated. Herein, we studied the anti-diabetic effects of jambone E (JE), a phenolipid from S. cumini, with in vitro and in vivo models. Data from current study showed that JE enhanced glucose consumption and uptake, promoted glycogen synthesis, and suppressed gluconeogenesis in insulin resistant (IR)-HepG2 cells and primary mouse hepatocytes. JE also attenuated streptozotocin-induced hyperglycemia and hyperlipidemia in type 1 diabetic (T1D) mice. Eleven metabolites (e.g. trimethylamine n-oxide, 4-pyridoxic acid, phosphatidylinositol 39:4, phenaceturic acid, and hippuric acid) were identified as potential serum biomarkers for JE's antidiabetic effects by an untargeted metabolomics approach. The further molecular mechanistic study revealed that JE up-regulated phosphorylation levels of protein kinase B (AKT), glycogen synthase kinase 3 beta, and forkhead box O1 (FoxO1), promoted nuclear exclusion of FoxO1 whilst decreased gene expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, phosphoenolpyruvate carboxykinase and glucose 6-phosphatase in IR-HepG2 cells and T1D mice. Our data suggested that JE might be a potent activator for AKT-mediated insulin signaling pathway, which was confirmed by the usage of AKT inhibitor and AKT-target siRNA interference, as well as the cellular thermal shift assay. Findings from the current study shed light on the anti-diabetic effects of phenolipids in the Syzygium species, which supports the use of medicinal plants in the Syzygium genus for potential pharmaceutical applications.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hipoglucemiantes , Resistencia a la Insulina , Fitoquímicos , Syzygium , Animales , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Gluconeogénesis , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Insulina/metabolismo , Hígado , Metaboloma , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estreptozocina , Syzygium/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
18.
Z Naturforsch C J Biosci ; 78(3-4): 105-112, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35599246

RESUMEN

Aromatic plants embrace volatile compounds with efficiency in treating different diseases. In Jordan, Syzygium aromaticum flower buds (clove) are extensively used as folk medicine without awareness of its bio-safe dosage. Herein, clove buds were hydrodistilled using the Clevenger apparatus, and the resulting essential oil (CEO) was analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The antibacterial activity was evaluated against tested bacterial strains by agar diffusion test and micro-broth dilution assay. The antioxidant capacity was assessed using DPPH radical scavenging assay, while the cytotoxic potency was unraveled by determination of its anti-proliferative activity against MDA-MB-231 breast adenocarcinoma and normal Vero cell lines. CEO yield was 5.7 ± 1.3% (w/w); encompassed 24 volatile ingredients with eugenol as the principal compound (73.41%). The CEO inhibited the growth of both Gram-positive and Gram-negative bacterial test strains, causing the formation of 13.7 ± 1.5-17.3 ± 0.6 mm and 11.7 ± 1.5-20.7 ± 1.2 mm inhibition zones, respectively with MIC 1.25-5 µL/mL. Moreover, it showed antioxidant activity with IC50 0.0016 ± 0.0001 µL/mL (1.6 ± 0.1 µg/mL, 2.98 ± 0.4 µg Trolox®/µg CEO). Intriguingly, the CEO was cytotoxic against both cancerous and noncancerous cell lines at IC50 of 0.25 ± 0.02 µL/mL and 0.18 ± 0.01 µL/mL, respectively. Herein results unveil the potential application of CEO as a pharmaceutical remedy with considering its bio-safe dosage.


Asunto(s)
Antineoplásicos , Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Syzygium/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
19.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500645

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infection worldwide. Clove oil's ability to inhibit the growth of MRSA was studied through in vitro and in vivo studies. The phytochemical components of clove oil were determined through gas chromatography-mass spectrometry (GC-MS) analysis. The antibacterial effects of clove oil and its interaction with imipenem were determined by studying MIC, MBC, and FIC indices in vitro. The in vivo wound-healing effect of the clove oil and infection control were determined using excision wound model rats. The GC-MS analysis of clove oil revealed the presence of 16 volatile compounds. Clove oil showed a good antibacterial effect in vitro but no interaction was observed with imipenem. Clove bud oil alone or in combination with imipenem healed wounds faster and reduced the microbial load in wounds. The findings of this study confirmed the antibacterial activity of clove oil in vitro and in vivo and demonstrated its interaction with imipenem.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Aceites Volátiles , Syzygium , Infección de Heridas , Ratas , Animales , Syzygium/química , Aceite de Clavo/farmacología , Aceite de Clavo/química , Imipenem/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química
20.
Arq. ciências saúde UNIPAR ; 26(3): 1111-1126, set-dez. 2022.
Artículo en Portugués | LILACS | ID: biblio-1414410

RESUMEN

O Diabetes desde a antiguidade tem sido uma das maiores causas de morte entre as populações do globo, e segundo a Organização Mundial da Saúde continua assolando nos nossos dias. Apesar das descobertas de tratamentos mais eficazes, a doença vem avançando em progressões assustadoras atualmente, com projeções preocupantes para a saúde pública. Como estratégia de acompanhamento terapêutico, estatístico direcionado a portadores de diabetes, o Governo Federal lançou o programa HIPERDIA (Hipertensos e Diabéticos), que faz o acompanhamento da evolução da doença e das complicações dos pacientes. E neste sentido, também são utilizadas terapêuticas mais acessíveis como as plantas medicinais. O objetivo desta pesquisa consiste em realizar uma revisão bibliográfica abordando as opções de terapias de controle do diabetes oferecidas no Sistema Único de Saúde e pesquisar fitoterápicos com potencial hipoglicêmico aprovados pela Anvisa. Através de levantamento bibliográfico, foram identificadas oito espécies vegetais utilizadas pela medicina popular no controle do diabetes, sendo estas: Bauhinia Forficata, Syzygium Cumini, Annona Muricata, Cynara Scolymus, Momordica Charantia, Eugenia Uniflora e Baccharis Trimera. Essas plantas do programa, embora tenham comprovação de seu efeito hipoglicêmico e redutores dos sintomas diabéticos, pelas suas propriedades antioxidantes e antiinflamatórias, colabora para uma melhor qualidade de vida aos pacientes.


Since antiquity, Diabetes has been one of the biggest causes of death amon-g populations around the globe, and according to the World Health Organization, it continues to plague our days. Despite discoveries of more effective treatments, the disease is currently advancing in frightening progressions, with worrying projections for public health. As a therapeutic, statistical follow-up strategy aimed at people with diabetes, the Federal Government launched the HIPERDIA (Hypertensive and Diabetic) program, which monitors the evolution of the disease and the complications of patients. And in this sense, more accessible therapies such as medicinal plants are also used. The objective of this research is to carry out a literature review addressing the options for diabetes control therapies offered in the Unified Health System and to search for herbal medicines with hypoglycemic potential approved by Anvisa. Through a bibliographical survey, eight plant species used by folk medicine to control diabetes were identified, namely: Bauhinia Forficata, Syzygium Cumini, Annona Muricata, Cynara Scolymus, Momordica Charantia, Eugenia Uniflora and Bacharis Trimera. These plants in the program, although they have evidence of their hypoglycemic effect and reduce diabetic symptoms, due to their antioxidant and anti-inflammatory properties, contribute to a better quality of life for patients.


La diabetes ha sido desde la antigüedad una de las principales causas de muerte entre las poblaciones del planeta, y según la Organización Mundial de la Salud sigue haciendo estragos en nuestros días. A pesar de los descubrimientos de tratamientos más eficaces, la enfermedad avanza actualmente con una progresión aterradora, con proyecciones preocupantes para la salud pública. Como estrategia de seguimiento terapéutico, estadísticamente dirigida a las personas con diabetes, el Gobierno Federal puso en marcha el programa HIPERDIA (Hipertensión y Diabetes), que controla la evolución de la enfermedad y las complicaciones de los pacientes. En este sentido, también se utilizan terapias más accesibles, como las plantas medicinales. El objetivo de esta investigación es realizar una revisión bibliográfica que aborde las opciones de terapias para el control de la diabetes ofrecidas en el Sistema Único de Salud y buscar fitoterapias con potencial hipoglucemiante aprobadas por Anvisa. Mediante un estudio bibliográfico, se identificaron ocho especies vegetales utilizadas por la medicina popular en el control de la diabetes, a saber: Bauhinia Forficata, Syzygium Cumini, Annona Muricata, Cynara Scolymus, Momordica Charantia, Eugenia Uniflora y Baccharis Trimera. Estas plantas del programa, aunque han demostrado su efecto hipoglucemiante y reductor de los síntomas diabéticos, por sus propiedades antioxidantes y antiinflamatorias, colaboran a una mejor calidad de vida para los pacientes.


Asunto(s)
Desarrollo de Programa , Diabetes Mellitus/terapia , Medicamento Fitoterápico , Plantas Medicinales , Terapéutica , Sistema Único de Salud , Salud Pública , Estrategias de Salud , Momordica charantia/química , Syzygium/química , Annona/química , Baccharis/química , Cynara scolymus/química , Bauhinia/química , Eugenia/química , Hipertensión/tratamiento farmacológico , Hipoglucemiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA