Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
STAR Protoc ; 2(3): 100765, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34485937

RESUMEN

3D cultures of mammary epithelial cells purified from murine models provide a unique resource to study genetically defined breast cancer and response to targeted therapies. Here, we describe step-by-step experimental procedures for the successful establishment of murine mammary organoid lines isolated from mammary glands or mammary tumors driven by mutations in components of the PI3K pathway. These detailed protocols also include procedures to perform assays that can be adopted to screen response to drug treatments and to inform better therapies. For details on potential applications and use of this protocol, please refer to Yip et al. (2020).


Asunto(s)
Glándulas Mamarias Animales/citología , Neoplasias Mamarias Experimentales/patología , Técnicas de Cultivo de Órganos/métodos , Organoides , Fosfatidilinositol 3-Quinasas/genética , Animales , Muerte Celular/fisiología , Criopreservación , Femenino , Glándulas Mamarias Animales/fisiología , Neoplasias Mamarias Experimentales/genética , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos/instrumentación , Fosfatidilinositol 3-Quinasas/metabolismo
2.
Methods Mol Biol ; 2143: 15-24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524469

RESUMEN

The ability of peripheral nervous system neurons to extend long, axon-like neurites in vitro makes them ideally suited for studies on mechanisms of axon survival and degeneration. In this chapter, we describe how to prepare explant cultures of sympathetic neurons of the superior cervical ganglion (SCG). We also describe how to induce and assess axon degeneration with an injury or a chemical insult.


Asunto(s)
Axones/fisiología , Degeneración Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos/métodos , Ganglio Cervical Superior/citología , Animales , Antineoplásicos/toxicidad , Axones/efectos de los fármacos , Axones/ultraestructura , Axotomía , Disección/métodos , Ratones , Microscopía de Contraste de Fase/métodos , Neurotoxinas/toxicidad , Técnicas de Cultivo de Órganos/instrumentación , Inhibidores de la Síntesis de la Proteína/farmacología , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Degeneración Walleriana/fisiopatología
3.
J Biomed Mater Res A ; 108(7): 1501-1508, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32170907

RESUMEN

As an emerging technology, intestinal organoids are promising new tools for basic and translational research in gastroenterology. Currently, culture of intestinal organoids relies mostly on a type of tumor-derived scaffolds, namely Matrigel, which may pose tumorigenic risks to organoid implantation. Apart from the traditional detection methods, such as tissue slicing and fluorescence staining, the monitoring of intestinal organoids requires real-time biosensors that can adapt to their three-dimensional dynamic growth patterns. In this review, we summarized the recent advances in developing definite hydrogel scaffolds for intestinal organoid culture and identified key parameters for scaffold design. In addition, classified by different substrate compositions like pH, electrolytes, and functional proteins, we concluded the existing live-imaging biosensors and elucidated their underlying mechanisms. We hope this review enhances the understanding of intestinal organoid culture and provides more practical approaches to investigate them.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles/métodos , Intestinos/citología , Organoides/citología , Andamios del Tejido/química , Animales , Técnicas Biosensibles/instrumentación , Humanos , Hidrogeles/química , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Células Madre/citología , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
4.
Lab Chip ; 19(17): 2854-2865, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31367720

RESUMEN

Microfluidic devices as translational research tools provide a potential alternative to animal experiments due to their ability to mimic physiological parameters. Several approaches that can be used to predict the efficacy or toxicity of anticancer drugs are available. In general, standard cell culture systems have the advantages of being relatively cost-effective, having high-throughput capability, and providing convenience. However, these models are inadequate to accurately recapitulate the complex organ-level physiological and pharmacological responses. Here, we present a one-stop microfluidic device enabling both 3-dimensional (3D) lung cancer organoid culturing and drug sensitivity tests directly on a microphysiological system (MPS). Our platform reproducibly yields 3D lung cancer organoids in a size-controllable manner and demonstrates for the first time the production of lung cancer organoids from patients with small-cell lung cancer. Lung cancer organoids derived from primary small-cell lung cancer tumors can rapidly proliferate and exhibit disease-specific characteristics in our MPS. Cisplatin and etoposide, the standard regimen for lung cancer, showed increased apoptosis induction in a concentration-dependent manner, but the organoids contained chemo-resistant cells in the core. We envision that this system may provide important information to guide therapeutic approaches at the preclinical level.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Etopósido/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Técnicas Analíticas Microfluídicas , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/patología , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas de Cultivo de Órganos/instrumentación , Organoides/patología , Tamaño de la Partícula , Propiedades de Superficie
5.
Biomaterials ; 214: 119225, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31154151

RESUMEN

The lymphatic system is an active player in the pathogenesis of several human diseases, including lymphedema and cancer. Relevant models are needed to advance our understanding of lymphatic biology in disease progression to improve therapy and patient outcomes. Currently, there are few 3D in vitro lymphatic models that can recapitulate the physiological structure, function, and interactions of lymphatic vessels in normal and diseased microenvironments. Here, we developed a 3D microscale lymphatic vessel (µLYMPH) system for generating human lymphatic vessels with physiological tubular structure and function. Consistent with characteristics of lymphatic vessels in vivo, the endothelium of cultured vessels was leaky with an average permeability of 1.38 × 10-5 ± 0.29 × 10-5 cm/s as compared to 0.68 × 10-5 ± 0.13 × 10-5 cm/s for blood vessels. This leakiness also resulted in higher uptake of solute by the lymphatic vessels under interstitial flow, demonstrating recapitulation of their natural draining function. The vessels secreted appropriate growth factors and inflammatory mediators. Our system identified the follistatin/activin axis as a novel pathway in lymphatic vessel maintenance and inflammation. Moreover, the µLYMPH system provided a platform for examining crosstalk between lymphatic vessels and tumor microenvironmental components, such as breast cancer-associated fibroblasts (CAFs). In co-culture with CAFs, vessel barrier function was significantly impaired by CAF-secreted IL-6, a possible pro-metastatic mechanism of lymphatic metastasis. Targeted blocking of the IL-6/IL-6R signaling pathway with an IL-6 neutralizing antibody fully rescued the vessels, demonstrating the potential of our system for screening therapeutic targets. These results collectively demonstrate the µLYMPH system as a powerful model for advancing lymphatic biology in health and disease.


Asunto(s)
Vasos Linfáticos/fisiología , Técnicas de Cultivo de Órganos/instrumentación , Línea Celular , Microambiente Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Linfangiogénesis , Vasos Linfáticos/citología , Permeabilidad , Transducción de Señal
6.
Methods Mol Biol ; 1914: 217-240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729467

RESUMEN

This chapter elaborates on the state-of-the-art experimental procedures utilized in ex-vivo model systems of cancer-bone cell interactions under "static and dynamic" culture conditions and their potential use to understand cellular and molecular mechanisms as well as drug testing and discovery. An additional focus of this chapter is to provide details of how to incorporate varying oxygen tension, viz., hypoxic, normoxic, and hyperoxic, in such studies and regulate the bone biology toward dissociation of the bone remodeling stages to achieve only "bone resorption" or "bone formation" individually.


Asunto(s)
Huesos/patología , Comunicación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Neoplasias/patología , Animales , Animales Recién Nacidos , Resorción Ósea/patología , Huesos/citología , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Humanos , Ratones , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Osteogénesis/fisiología
7.
Am J Transplant ; 19(6): 1641-1651, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30589181

RESUMEN

Optimal ex vivo corneal storage in eye banks is crucial to increase both the number of corneas suitable for graft and their intrinsic quality, mainly the number of viable endothelial cells, which dictates graft survival in recipients. With both passive storage methods used worldwide (short-term cold storage in the United States, long-term organ culture in Europe), significant endothelial cell loss is inevitable. Here we show that, with an active storage machine, also called a bioreactor, which restores 2 fundamental physiological parameters, intraocular pressure and medium renewal, endothelial cell survival is improved by 23% compared with organ culture after 4 weeks' storage. Also observed in the bioreactor is a 4-fold higher expression of Na+ /K+ ATPase, which supports one of the major endothelial cell pumping functions. In addition, corneas remain thin and transparent, so they are suitable for surgery at any time. This new active eye banking method may help to reduce the severe global scarcity of donor corneas.


Asunto(s)
Córnea , Trasplante de Córnea , Bancos de Ojos , Preservación de Órganos/instrumentación , Reactores Biológicos , Supervivencia Celular , Córnea/citología , Córnea/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Células Endoteliales/citología , Células Endoteliales/enzimología , Diseño de Equipo , Humanos , Técnicas In Vitro , Técnicas de Cultivo de Órganos/instrumentación , Estudios Prospectivos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Tiempo
8.
Lab Chip ; 18(1): 115-125, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29184959

RESUMEN

This paper reports a multi-throughput multi-organ-on-a-chip system formed on a pneumatic pressure-driven medium circulation platform with a microplate-sized format as a novel type of microphysiological system. The pneumatic pressure-driven platform enabled parallelized multi-organ experiments (i.e. simultaneous operation of multiple multi-organ culture units) and pipette-friendly liquid handling for various conventional cell culture experiments, including cell seeding, medium change, live/dead staining, cell growth analysis, gene expression analysis of collected cells, and liquid chromatography-mass spectrometry analysis of chemical compounds in the culture medium. An eight-throughput two-organ system and a four-throughput four-organ system were constructed on a common platform, with different microfluidic plates. The two-organ system, composed of liver and cancer models, was used to demonstrate the effect of an anticancer prodrug, capecitabine (CAP), whose metabolite 5-fluorouracil (5-FU) after metabolism by HepaRG hepatic cells inhibited the proliferation of HCT-116 cancer cells. The four-organ system, composed of intestine, liver, cancer, and connective tissue models, was used to demonstrate evaluation of the effects of 5-FU and two prodrugs of 5-FU (CAP and tegafur) on multiple organ models, including cancer and connective tissue.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas de Cultivo de Órganos/instrumentación , Células CACO-2 , Técnicas de Cultivo de Célula/instrumentación , Diseño de Equipo , Células HCT116 , Humanos , Modelos Biológicos , Presión
9.
Phytomedicine ; 36: 88-94, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29157833

RESUMEN

BACKGROUND: Asafoetida is an oleo-gum resin mainly obtained from Ferula assa-foetida L. species in the apiaceae family. Previous studies have shown that it has antispasmodic effects on rat's and pig's ileums. PURPOSE: The main goals of this study were to assess the vasodilatory effect of asafoetida essential oil (AEO) on the contractile response of rat's aorta rings and to find the role of nitric oxide, cyclooxygenase, and calcium channels. Thoracic aorta rings were stretched under a steady-state tension of 1 g in an organ bath apparatus for 1 h and then precontracted by KCl (80 mM) in the presence and absence of AEO. L-NAME (blocker of nitric oxide synthase) and indomethacin (blocker of cyclooxygenase) were used to assess the role of nitric oxide (NO) and prostacyclin in the vasodilatory effect of AEO. Also, the effect of AEO on the influx of calcium through the cell membrane calcium channels was determined. RESULTS: Data showed that AEO had vasodilatory effects on aorta rings with both intact (IC50 = 1.6 µl/l) or denuded endothelium (IC50 = 19.2 µl/l) with a significantly higher potency in intact endothelium rings. The vasodilatory effects of AEO were reduced, but not completely inhibited, in the presence of L-NAME or indomethacin. Adding AEO to the free-calcium medium also significantly reduced the CaCl2-induced contractions. CONCLUSION: The results indicated that AEO has a potent vasodilatory effect that is endothelium-dependent and endothelium-independent. Also, it reduced the influx of calcium into the cell through plasma membrane calcium channels.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Canales de Calcio/metabolismo , Ferula/química , Aceites Volátiles/farmacología , Vasodilatadores/farmacología , Animales , Aorta Torácica/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Epoprostenol/metabolismo , Indometacina/farmacología , Masculino , Contracción Muscular/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Aceites Volátiles/química , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Ratas Wistar
10.
Sci Rep ; 7(1): 12277, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947782

RESUMEN

Precision cancer medicine seeks to target the underlying genetic alterations of cancer; however, it has been challenging to use genetic profiles of individual patients in identifying the most appropriate anti-cancer drugs. This spurred the development of patient avatars; for example, patient-derived xenografts (PDXs) established in mice and used for drug exposure studies. However, PDXs are associated with high cost, long development time and low efficiency of engraftment. Herein we explored the use of microfluidic devices or microchambers as simple and low-cost means of maintaining bladder cancer cells over extended periods of times in order to study patterns of drug responsiveness and resistance. When placed into 75 µm tall microfluidic chambers, cancer cells grew as ellipsoids reaching millimeter-scale dimeters over the course of 30 days in culture. We cultured three PDX and three clinical patient specimens with 100% success rate. The turn-around time for a typical efficacy study using microchambers was less than 10 days. Importantly, PDX-derived ellipsoids in microchambers retained patterns of drug responsiveness and resistance observed in PDX mice and also exhibited in vivo-like heterogeneity of tumor responses. Overall, this study establishes microfluidic cultures of difficult-to-maintain primary cancer cells as a useful tool for precision cancer medicine.


Asunto(s)
Antineoplásicos/administración & dosificación , Microfluídica/métodos , Técnicas de Cultivo de Órganos/métodos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Antineoplásicos/farmacología , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Resistencia a Medicamentos , Humanos , Microfluídica/instrumentación , Modelos Teóricos , Técnicas de Cultivo de Órganos/instrumentación , Organoides/efectos de los fármacos , Organoides/crecimiento & desarrollo
11.
Lab Chip ; 17(13): 2264-2271, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28598479

RESUMEN

Trans-epithelial electrical resistance (TEER) is broadly used as an experimental readout and a quality control assay for measuring the integrity of epithelial monolayers cultured under static conditions in vitro, however, there is no standard methodology for its application to microfluidic organ-on-a-chip (organ chip) cultures. Here, we describe a new microfluidic organ chip design that contains embedded electrodes, and we demonstrate its utility for assessing formation and disruption of barrier function both within a human lung airway chip lined by a fully differentiated mucociliary human airway epithelium and in a human gut chip lined by intestinal epithelial cells. These chips with integrated electrodes enable real-time, non-invasive monitoring of TEER and can be applied to measure barrier function in virtually any type of cultured cell.


Asunto(s)
Impedancia Eléctrica , Células Epiteliales , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Técnicas de Cultivo de Órganos/instrumentación , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/fisiología , Epitelio/fisiología , Diseño de Equipo , Humanos
12.
Biotechnol Bioeng ; 114(10): 2400-2411, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28627740

RESUMEN

Regenerating damaged tissue interfaces remains a significant clinical challenge, requiring recapitulation of the structure, composition, and function of the native enthesis. In the ligament-to-bone interface, this region transitions from ligament to fibrocartilage, to calcified cartilage and then to bone. This gradation in tissue types facilitates the transfer of load between soft and hard structures while minimizing stress concentrations at the interface. Previous attempts to engineer the ligament-bone interface have utilized various scaffold materials with an array of various cell types and/or biological cues. The primary goal of this study was to engineer a multiphased construct mimicking the ligament-bone interface by driving differentiation of a single population of mesenchymal stem cells (MSCs), seeded within blended fibrin-alginate hydrogels, down an endochondral, fibrocartilaginous, or ligamentous pathway through spatial presentation of growth factors along the length of the construct within a custom-developed, dual-chamber culture system. MSCs within these engineered constructs demonstrated spatially distinct regions of differentiation, adopting either a cartilaginous or ligamentous phenotype depending on their local environment. Furthermore, there was also evidence of spatially defined progression toward an endochondral phenotype when chondrogenically primed MSCs within this construct were additionally exposed to hypertrophic cues. The study demonstrates the feasibility of engineering spatially complex soft tissues within a single MSC laden hydrogel through the defined presentation of biochemical cues. This novel approach represents a new strategy for engineering the ligament-bone interface. Biotechnol. Bioeng. 2017;114: 2400-2411. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Cartílago Articular/crecimiento & desarrollo , Condrogénesis/fisiología , Ligamentos/crecimiento & desarrollo , Células Madre Mesenquimatosas/fisiología , Técnicas de Cultivo de Órganos/instrumentación , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Animales , Cartílago Articular/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Diseño de Equipo , Análisis de Falla de Equipo , Ligamentos/citología , Células Madre Mesenquimatosas/citología , Porcinos , Ingeniería de Tejidos/métodos
13.
Acta Biomater ; 52: 1-8, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179160

RESUMEN

Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. STATEMENT OF SIGNIFICANCE: In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs.


Asunto(s)
Órganos Bioartificiales , Colágeno Tipo I/química , Células Epiteliales/citología , Regeneración Tisular Dirigida/instrumentación , Técnicas de Cultivo de Órganos/instrumentación , Organogénesis/fisiología , Materiales Biocompatibles/química , Proliferación Celular/fisiología , Células Cultivadas , Células Epiteliales/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Proteínas de la Matriz Extracelular/química , Humanos , Ensayo de Materiales , Impresión Tridimensional , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Andamios del Tejido
14.
Biomaterials ; 121: 193-204, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092776

RESUMEN

The periosteum plays a critical role in bone homeostasis and regeneration. It contains a vascular component that provides vital blood supply to the cortical bone and an osteogenic niche that acts as a source of bone-forming cells. Periosteal grafts have shown promise in the regeneration of critical size defects, however their limited availability restricts their widespread clinical application. Only a small number of tissue-engineered periosteum constructs (TEPCs) have been reported in the literature. A current challenge in the development of appropriate TEPCs is a lack of pre-clinical models in which they can reliably be evaluated. In this study, we present a novel periosteum tissue engineering concept utilizing a multiphasic scaffold design in combination with different human cell types for periosteal regeneration in an orthotopic in vivo platform. Human endothelial and bone marrow mesenchymal stem cells (BM-MSCs) were used to mirror both the vascular and osteogenic niche respectively. Immunohistochemistry showed that the BM-MSCs maintained their undifferentiated phenotype. The human endothelial cells developed into mature vessels and connected to host vasculature. The addition of an in vitro engineered endothelial network increased vascularization in comparison to cell-free constructs. Altogether, the results showed that the human TEPC (hTEPC) successfully recapitulated the osteogenic and vascular niche of native periosteum, and that the presented orthotopic xenograft model provides a suitable in vivo environment for evaluating scaffold-based tissue engineering concepts exploiting human cells.


Asunto(s)
Órganos Bioartificiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Periostio/citología , Periostio/crecimiento & desarrollo , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Ingeniería de Tejidos/métodos
15.
Biomaterials ; 112: 20-30, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27741500

RESUMEN

Matrix systems used to study complex three-dimensional (3D) cellular processes like mammary epithelial tissue morphogenesis and tumorigenesis ex vivo often require ill-defined biological components, which lead to poor reproducibility and a lack of control over physical parameters. In this study, a well-defined, tunable synthetic biohybrid hydrogel composed of the glycosaminoglycan heparin, star-shaped poly(ethylene glycol) (starPEG), and matrix metalloproteinase- (MMP-) cleavable crosslinkers was applied to dissect the biophysical and biochemical signals promoting human mammary epithelial cell (MEC) morphogenesis. We show that compliant starPEG-heparin matrices promote the development of polarized MEC acini. Both the presence of heparin and MMP-cleavable crosslinks are essential in facilitating MEC morphogenesis without supplementation of exogenous adhesion ligands. In this system, MECs secrete and organize laminin in basement membrane-like assemblies to promote integrin signaling and drive acinar development. Therefore, starPEG-heparin hydrogels provide a versatile platform to study mammary epithelial tissue morphogenesis in a chemically defined and precisely tunable 3D in vitro microenvironment. The system allows investigation of biophysical and biochemical aspects of mammary gland biology and potentially a variety of other organoid culture studies.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/fisiología , Matriz Extracelular/química , Glicosaminoglicanos/química , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/crecimiento & desarrollo , Morfogénesis/fisiología , Materiales Biomiméticos/química , Línea Celular , Proliferación Celular/fisiología , Humanos , Hidrogeles/química , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Impresión Tridimensional , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Andamios del Tejido
16.
Integr Biol (Camb) ; 8(10): 1022-1029, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27605158

RESUMEN

Pharmaceutical development is greatly hindered by the poor predictive power of existing in vitro models for drug efficacy and toxicity testing. In this work, we present a new and multilayer organs-on-a-chip device that allows for the assessment of drug metabolism, and its resultant drug efficacy and cytotoxicity in different organ-specific cells simultaneously. Four cell lines representing the liver, tumor (breast cancer and lung cancer), and normal tissue (gastric cells) were cultured in the compartmentalized micro-chambers of the multilayer microdevice. We adopted the prodrug capecitabine (CAP) as a model drug. The intermediate metabolites 5'-deoxy-5-fluorocytidine (DFUR) of CAP that were metabolized from liver and its active metabolite 5-fluorouracil (5-FU) from the targeted cancer cells and normal tissue cells were identified using mass spectrometry. CAP exhibited strong cytoxicity on breast cancer and lung cancer cells, but not in normal gastric cells. Moreover, the drug-induced cytotoxicity on cells varied in various target tissues, suggesting the metabolism-dependent drug efficacy in different tissues as exisits in vivo. This in vitro model can not only allow for characterizing the dynamic metabolism of anti-cancer drugs in different tissues simultaneously, but also facilitate the assessment of drug bioactivity on various target tissues in a simple way, indicating the utility of this organs-on-chip for applications in pharmacodynamics/pharmacokinetics studies, drug efficacy and toxicity testing.


Asunto(s)
Capecitabina/farmacocinética , Capecitabina/toxicidad , Dispositivos Laboratorio en un Chip , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Técnicas de Cultivo de Órganos/instrumentación , Pruebas de Toxicidad/instrumentación , Células A549 , Órganos Bioartificiales , Capecitabina/administración & dosificación , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Inyección de Flujo/instrumentación , Análisis de Inyección de Flujo/métodos , Células Hep G2 , Humanos , Análisis de Flujos Metabólicos/instrumentación , Análisis de Flujos Metabólicos/métodos , Neoplasias Experimentales/patología , Técnicas de Cultivo de Órganos/métodos , Análisis de Matrices Tisulares/instrumentación , Pruebas de Toxicidad/métodos , Vísceras/efectos de los fármacos , Vísceras/metabolismo , Vísceras/patología
17.
Biomaterials ; 106: 58-68, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27552316

RESUMEN

Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also have significant potentials in engineering large-scale vascularized tissue constructs towards applications in organ transplantation and repair.


Asunto(s)
Vasos Sanguíneos/citología , Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Técnicas de Cultivo de Órganos/instrumentación , Impresión Tridimensional/instrumentación , Ingeniería de Tejidos/instrumentación , Técnicas de Cultivo Celular por Lotes/instrumentación , Órganos Bioartificiales , Reactores Biológicos , Células Cultivadas , Células Endoteliales/citología , Diseño de Equipo , Humanos , Tinta , Técnicas de Cultivo de Órganos/métodos , Perfusión/instrumentación , Andamios del Tejido
18.
J Ovarian Res ; 9(1): 47, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27488614

RESUMEN

BACKGROUND: Improved cancer therapeutics and enhanced cancer survivorship have emphasized the severe long-term side effects of chemotherapy. Specifically, studies have linked many chemotherapy agents with primary ovarian insufficiency, although an exact insult model has not yet been determined. To investigate and ultimately solve this problem, a novel device for extended study of mammalian ovaries in vitro was developed. METHODS: A bioreactor was fabricated for bovine ovarian culture that provides intravascular delivery of media to the ovary through isolation and cannulation of a main ovarian artery branch. Whole ovaries were cultured in vitro using three methods: (1) continuously supplied fresh culture media, (2) recirculated culture media, or (3) continuously supplied fresh culture media supplemented with 500 nM doxorubicin for 24 or 48 h. TUNEL assay was used to assess apoptotic cell percentages in the three groups as compared to uncultured baseline ovaries. RESULTS: The ovary culture method was shown to maintain cell viability by effectively delivering nutrient-enriched pH-balanced media at a constant flow rate. Lower apoptosis observed in ovaries cultured in continuously supplied fresh culture media illustrates that this culture device and method are the first to sustain whole bovine ovary viability for 48 h. Meanwhile, the increase in the percentage of cell apoptosis with doxorubicin treatment indicates that the device can provide an alternative model for testing chemotherapy and chemoprotection treatments to prevent primary ovarian insufficiency in cancer patients. CONCLUSIONS: An ovarian bioreactor with consistent culture media flow through an ovarian vasculature-assisted approach maintains short-term whole bovine ovary viability.


Asunto(s)
Medios de Cultivo/química , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Ovario/citología , Animales , Reactores Biológicos/veterinaria , Bovinos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Femenino , Humanos , Técnicas de Cultivo de Órganos/veterinaria
19.
Lab Chip ; 16(10): 1840-51, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27128791

RESUMEN

Recruitment of new blood vessels from the surrounding tissue is central to tumor progression and involves a fundamental transition of the normal, organized vasculature into a dense disarray of vessels that infiltrates the tumor. At present, studying the co-development of the tumor and recruited normal tissue is experimentally challenging because many of the important events occur rapidly and over short length scales in a dense three-dimensional space. To overcome these experimental limitations, we partially confined tumors within biocompatible and optically clear tissue isolation chambers (TICs) and implanted them in mice to create a system that is more amenable to microscopic analysis. Our goal was to integrate the tumor into a recruited host tissue - complete with vasculature - and demonstrate that the system recapitulates relevant features of the tumor microenvironment. We show that the TICs allow clear visualization of the cellular events associated with tumor growth and progression at the host-tumor interface including cell infiltration, matrix remodeling and angiogenesis. The tissue within the chamber is viable for more than a month, and the process is robust in both the skin and brain. Treatment with losartan, an angiotensin II receptor antagonist, decreased the collagen density and fiber length in the TIC, consistent with the known activity of this drug. We further show that collagen fibers display characteristic tumor signatures and play a central role in angiogenesis, guiding the migration of tethered endothelial sprouts. The methodology combines accessible methods of microfabrication with animal models and will enable more informative studies of the cellular mechanisms of tumor progression.


Asunto(s)
Implantes Experimentales , Neovascularización Patológica/patología , Técnicas de Cultivo de Órganos/instrumentación , Animales , Materiales Biocompatibles , Vasos Sanguíneos/patología , Encéfalo/patología , Colágeno/metabolismo , Dimetilpolisiloxanos , Diseño de Equipo , Fibroblastos/patología , Losartán , Macrófagos/patología , Ratones Transgénicos , Neovascularización Patológica/tratamiento farmacológico , Células del Estroma/patología , Microambiente Tumoral
20.
Biofabrication ; 8(1): 014101, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26756674

RESUMEN

The inadequacy of animal models in correctly predicting drug and biothreat agent toxicity in humans has resulted in a pressing need for in vitro models that can recreate the in vivo scenario. One of the most important organs in the assessment of drug toxicity is liver. Here, we report the development of a liver-on-a-chip platform for long-term culture of three-dimensional (3D) human HepG2/C3A spheroids for drug toxicity assessment. The bioreactor design allowed for in situ monitoring of the culture environment by enabling direct access to the hepatic construct during the experiment without compromising the platform operation. The engineered bioreactor could be interfaced with a bioprinter to fabricate 3D hepatic constructs of spheroids encapsulated within photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. The engineered hepatic construct remained functional during the 30 days culture period as assessed by monitoring the secretion rates of albumin, alpha-1 antitrypsin, transferrin, and ceruloplasmin, as well as immunostaining for the hepatocyte markers, cytokeratin 18, MRP2 bile canalicular protein and tight junction protein ZO-1. Treatment with 15 mM acetaminophen induced a toxic response in the hepatic construct that was similar to published studies on animal and other in vitro models, thus providing a proof-of-concept demonstration of the utility of this liver-on-a-chip platform for toxicity assessment.


Asunto(s)
Bioensayo/instrumentación , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Dispositivos Laboratorio en un Chip , Hígado Artificial , Impresión Tridimensional/instrumentación , Pruebas de Toxicidad/instrumentación , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Diseño de Equipo , Análisis de Falla de Equipo , Células Hep G2 , Humanos , Técnicas de Cultivo de Órganos/instrumentación , Esferoides Celulares/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA