Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.347
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000172

RESUMEN

In this study, we present data on the effects of condensed tannins (CTs) and hydrolysable tannins (HTs), polyphenols extracted from plants, at different concentrations on zebrafish development to identify the range of concentrations with toxic effects. Zebrafish embryos were exposed to CTs and HTs at two different concentration ranges (5.0-20.0 µgL-1 and 5.0-20.0 mgL-1) for 72 h. The toxicity parameters were observed up to 72 h of treatment. The uptake of CTs and HTs by the zebrafish larvae was assessed via HPLC analysis. A qRT-PCR analysis was performed to evaluate the expressions of genes cd63, zhe1, and klf4, involved in the hatching process of zebrafish. CTs and HTs at 5.0, 10.0, and 20.0 µgL-1 were not toxic. On the contrary, at 5.0, 10.0, and 20.0 mgL-1, HTs induced a delay in hatching starting from 48 h of treatment, while CTs showed a delay in hatching mainly at 48 h. The analysis of gene expression showed a downregulation in the group exposed to HTs, confirming the hatching data. We believe that this study is important for defining the optimal doses of CTs and HTs to be employed in different application fields such as the chemical industry, the animal feed industry, and medical science.


Asunto(s)
Pez Cebra , Pez Cebra/embriología , Pez Cebra/genética , Animales , Taninos Hidrolizables/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proantocianidinas/farmacología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Desarrollo Embrionario/efectos de los fármacos
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000112

RESUMEN

Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-ß-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.


Asunto(s)
Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta , Taninos Hidrolizables , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Transducción de Señal , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Taninos Hidrolizables/farmacología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Células PC-3 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Docetaxel/farmacología
3.
Mol Nutr Food Res ; 68(12): e2300912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847553

RESUMEN

Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1ß, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.


Asunto(s)
Autofagia , Proteínas Portadoras , Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Taninos Hidrolizables , Hígado , Ratones Endogámicos C57BL , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Taninos Hidrolizables/farmacología , Autofagia/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transducción de Señal/efectos de los fármacos , Humanos , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Hep G2 , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tiorredoxinas
4.
Food Funct ; 15(13): 7189-7199, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38895881

RESUMEN

Some strains of Lactiplantibacillus plantarum produce specific tannases that could enable the metabolism of ellagitannins into more bioavailable phenolic metabolites, thereby promoting the health effects of these polyphenols. However, the metabolic ability of these strains remains poorly understood. In this study, we analyzed the ability of broad esterase-producing (Est_1092+) and extracellular tannase-producing (TanA+) strains to convert a wide assortment of ellagitannins from camu-camu (Myrciaria dubia) fruit. To this end, forty-three strains were screened to identify and sequence (WGS) those producing Est_1092. In addition, six previously reported TanA+ strains were included in the study. Each strain (Est_1092+ or TanA+) was inoculated into a minimal culture medium supplemented with an aqueous camu-camu extract. After fermentation, supernatants were collected for semi-quantification of ellagitannins and their metabolites by mass spectrometry. For analysis, the strains were grouped according to their enzyme type and compared with an Est_1092 and TanA-lacking strain. Out of the forty-three isolates, three showed Est_1092 activity. Of the Est_1092+ and TanA+ strains, only the latter hydrolyzed the tri-galloyl-HHDP-glucose and various isomers of HHDP-galloyl-glucose, releasing HHDP-glucose and gallic acid. TanA+ strains also transformed three isomers of di-HHDP-galloyl-glucose, liberating di-HHDP-glucose and gallic acid. Overall, TanA+ strains released 3.6-4.9 times more gallic acid than the lacking strain. In addition, those exhibiting gallate decarboxylase activity pursued gallic acid metabolism to release pyrogallol. Neither Est_1092+ nor TanA+ strains transformed ellagitannin-core structures. In summary, TanA+ L. plantarum strains have the unique ability to hydrolyze a wide range of galloylated ellagitannins, releasing phenolic metabolites with additional health benefits.


Asunto(s)
Biotransformación , Hidrolasas de Éster Carboxílico , Taninos Hidrolizables , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/química , Hidrolasas de Éster Carboxílico/metabolismo , Fermentación , Proteínas Bacterianas/metabolismo , Frutas , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología
5.
Eur J Pharmacol ; 977: 176750, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897439

RESUMEN

Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.


Asunto(s)
Disfunción Cognitiva , Suplementos Dietéticos , Taninos Hidrolizables , Granada (Fruta) , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Taninos Hidrolizables/química , Humanos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Granada (Fruta)/química , Animales , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
Plant J ; 119(3): 1299-1312, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838090

RESUMEN

Hydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion-fragment ion pairs in the feature fragment data obtained using UPLC-Q-TOF-/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C. oleifera were analyzed qualitatively and quantitatively. Correlation analysis between the transcript abundance of serine carboxypeptidase-like acyltransferases (SCPL-ATs) and the peak area of galloyl products in Camellia species showed that SCPL3 expression was highly correlated with HT biosynthesis. Enzymatic verification of the recombinant protein showed that CoSCPL3 from C. oleifera catalyzed the four consecutive steps involved in the conversion of digalloylglucose to pentagalloylglucose. We also identified the residues affecting the enzymatic activity of CoSCPL3 and determined that SCPL-AT catalyzes the synthesis of galloyl glycosides. The findings of this study provide a target gene for germplasm innovation of important cash crops that are rich in HTs, such as C. oleifera, strawberry, and walnut.


Asunto(s)
Aciltransferasas , Camellia , Carboxipeptidasas , Taninos Hidrolizables , Proteínas de Plantas , Camellia/genética , Camellia/enzimología , Camellia/metabolismo , Carboxipeptidasas/metabolismo , Carboxipeptidasas/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Taninos Hidrolizables/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/enzimología , Espectrometría de Masas en Tándem
7.
Front Immunol ; 15: 1364161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803504

RESUMEN

Introduction: Atherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production. Methods: To investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE-/- mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein. Results: The vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway. Discussion: Our findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Glucósidos , Taninos Hidrolizables , Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Inflamasomas/metabolismo , Glucósidos/farmacología , Glucósidos/uso terapéutico , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE
8.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38805688

RESUMEN

Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Feijoa is a rich source of bioactive compounds with anticancer, anti-inflammatory, antibacterial, and antifungal activities; however, the mechanism of action of these compounds is largely not known. Here, we used chemical genetic analyses in the model organism Saccharomyces cerevisiae to investigate the mechanism of action of a feijoa-derived ethanol adduct of vescalagin (EtOH-vescalagin). Genome-wide barcode sequencing analysis revealed yeast strains lacking genes in iron metabolism, zinc metabolism, retromer function, or mitochondrial function were hypersensitive to 0.3 µM EtOH-vescalagin. This treatment increased expression of iron uptake proteins at the plasma membrane, which was a compensatory response to reduced intracellular iron. Likewise, EtOH-vescalagin increased expression of the Cot1 protein in the vacuolar membrane that transports zinc into the vacuole to prevent cytoplasmic accumulation of zinc. Each individual subunit in the retromer complex was required for the iron homeostatic mechanism of EtOH-vescalagin, while only the cargo recognition component in the retromer complex was required for the zinc homeostatic mechanism. Overexpression of either retromer subunits or high-affinity iron transporters suppressed EtOH-vescalagin bioactivity in a zinc-replete condition, while overexpression of only retromer subunits increased EtOH-vescalagin bioactivity in a zinc-deficient condition. Together, these results indicate that EtOH-vescalagin bioactivity begins with extracellular iron chelation and proceeds with intracellular transport of zinc via the retromer complex. More broadly, this is the first report of a bioactive compound to further characterize the poorly understood interaction between zinc metabolism and retromer function.


Asunto(s)
Etanol , Frutas , Homeostasis , Taninos Hidrolizables , Hierro , Saccharomyces cerevisiae , Zinc , Zinc/metabolismo , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/metabolismo , Hierro/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Etanol/metabolismo , Frutas/metabolismo , Quelantes del Hierro/farmacología , Genómica/métodos
9.
J Physiol Pharmacol ; 75(2): 123-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736260

RESUMEN

Myocardial infarction (MI) is a significant global health issue and the leading cause of death. Myocardial infarction (MI) is characterized by events such as damage to heart cells and stress generated by inflammation. Punicalagin (PCN), a naturally occurring bioactive compound found in pomegranates, exhibits a diverse array of pharmacological effects against many disorders. This study aimed to assess the preventive impact of PCN, with its potential anti-inflammatory and antioxidant properties, on myocardial injury caused by isoproterenol (ISO) in rats and elucidate the possible underlying mechanisms. Experimental rats were randomly categorized into four groups: control group (fed a regular diet for 15 days), PCN group (orally administered PCN at 50 mg/kg body weight (b.w.) for 15 days), ISO group (subcutaneously administered ISO (85 mg/kg b.w.) on days 14 and 15 to induce MI), and PCN+ISO group (orally preadministered PCN (50 mg/kg b.w.) for 15 days and administered ISO (85 mg/kg b.w.) on days 14 and 15). The rat cardiac tissue was then investigated for cardiac marker, oxidative stress marker, and inflammatory marker expression levels. PCN prevented ISO-induced myocardial injury, suppressing the levels of creatine kinase-myocardial band, C-reactive protein, homocysteine, cardiac troponin T, and cardiac troponin I in the rats. Moreover, PCN treatment reversed (P<0.01) the ISO-induced increase in blood pressure, attenuated lipid peroxidation markers, and depleted both enzymatic and nonenzymatic markers in the rats. Additionally, PCN inhibited (P<0.01) ISO-induced overexpression of oxidative stress markers (p-38, p-c-Jun N-terminal kinase, and p-extracellular signal-regulated kinase 1), inflammatory markers (nuclear factor-kappa B, tumor necrosis factor-alpha, and interleukin-6), and matrix metalloproteinases and decreased the levels (P<0.01) of apoptosis proteins in the rats. Nuclear factor erythroid 2-related factor 2/silent information regulator transcript-1 (Nrf2/Sirt1) is a major cellular defense protein that regulates and scavenges oxidative toxic substances through apoptosis. Therefore, overexpression of Nrf2/Sirt1 to inhibit inflammation and oxidative stress is considered a novel target for preventing MI. PCN also significantly enhanced the expression of Nrf2/Sirt1 in ISO-induced rats. Histopathological analyses of cardiac tissue revealed that PCN treatment exhibited a protective effect on the heart tissue, mitigating damage. These findings show that by activating the Nrf2/Sirt1 pathway, PCN regulates oxidative stress, inflammation, and apoptosis, hence providing protection against ISO-induced myocardial ischemia.


Asunto(s)
Taninos Hidrolizables , Inflamación , Isoproterenol , Infarto del Miocardio , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sirtuina 1 , Animales , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/prevención & control , Infarto del Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Taninos Hidrolizables/farmacología , Sirtuina 1/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/inducido químicamente , Ratas , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Wistar , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Antioxidantes/farmacología , Miocardio/metabolismo , Miocardio/patología
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731983

RESUMEN

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Asunto(s)
Acné Vulgar , Fagaceae , Taninos Hidrolizables , Extractos Vegetales , Hojas de la Planta , Humanos , Taninos Hidrolizables/farmacología , Fagaceae/química , Acné Vulgar/microbiología , Acné Vulgar/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Células HaCaT , Propionibacterium acnes/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Interleucina-8/metabolismo
11.
New Phytol ; 242(6): 2702-2718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515244

RESUMEN

Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that ß-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for ß-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different ß-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding ß-glucogallin and HT biosynthesis in closely related oak species.


Asunto(s)
Biomarcadores , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Taninos Hidrolizables , Quercus , Biomarcadores/metabolismo , Genómica/métodos , Taninos Hidrolizables/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Quercus/genética , Quercus/metabolismo , Especificidad de la Especie
12.
J Agric Food Chem ; 72(14): 7882-7893, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530797

RESUMEN

IL-1ß is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1ß-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1ß-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1ß and IL-1R by directly binding to IL-1ß and inhibited the IL-1ß activity. It suppressed IL-1ß-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1ß-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1ß activity and anticolitis effect by hindering the IL-1ß and IL-1R interaction and may be a promising therapeutic anti-IL-1ß agent for IBD treatment.


Asunto(s)
Colitis , Glucósidos , Taninos Hidrolizables , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Células CACO-2 , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo
13.
Eur J Pharmacol ; 970: 176435, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38428663

RESUMEN

Punicalagin (PUN) is a polyphenol derived from the pomegranate peel. It has been reported to have many beneficial effects, including anti-inflammatory, anti-oxidant, and anti-proliferation. However, the role of PUN in macrophage phagocytosis is currently unknown. In this study, we found that pre-treatment with PUN significantly enhanced phagocytosis by macrophages in a time- and dose-dependent manner in vitro. Moreover, KEGG enrichment analysis by RNA-sequencing showed that differentially expressed genes following PUN treatment were significantly enriched in phagocyte-related receptors, such as the C-type lectin receptor signaling pathway. Among the C-type lectin receptor family, Mincle (Clec4e) significantly increased at the mRNA and protein level after PUN treatment, as shown by qRT-PCR and western blotting. Small interfering RNA (siRNA) mediated knockdown of Mincle in macrophages resulted in down regulation of phagocytosis. Furthermore, western blotting showed that PUN treatment enhanced the phosphorylation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) in macrophages at the early stage. Mincle-mediated phagocytosis by PUN was inhibited by PDTC (a NF-κB inhibitor) and SB203580 (a p38 MAPK inhibitor). In addition, PUN pre-treatment enhanced phagocytosis by peritoneal and alveolar macrophages in vivo. After intraperitoneal injection of Escherichia coli (E.coli), the bacterial load of peritoneal lavage fluid and peripheral blood in PUN pre-treated mice decreased significantly. Similarly, the number of bacteria in the lung tissue significantly reduced after intranasal administration of Pseudomonas aeruginosa (PAO1). Taken together, our results reveal that PUN enhances bacterial clearance in mice by activating the NF-κB and MAPK pathways and upregulating C-type lectin receptor expression to enhance phagocytosis by macrophages.


Asunto(s)
Taninos Hidrolizables , Macrófagos , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Transducción de Señal , Fagocitosis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Antioxidantes/farmacología , Lectinas Tipo C/metabolismo
14.
Chem Pharm Bull (Tokyo) ; 72(4): 349-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556326

RESUMEN

Ellagitannins, a class of polyphenols with divergent structures, have attracted considerable attention from synthetic organic chemists. The basic structures in ellagitannins contain esters of D-glucose with galloyl or hexahydroxyldiphenoyl groups, as well as diaryl ether structures. Thus, the synthesis methodologies of such components have been developed by various groups, including our group. This review describes the synthetic methods reported by our group during 2017-2023, aimed at increasing the number of ellagitannins that can be chemically synthesized. In addition, recent related reports are introduced.


Asunto(s)
Taninos Hidrolizables , Polifenoles , Taninos Hidrolizables/química , Polifenoles/química
15.
Int J Biol Macromol ; 263(Pt 1): 130160, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367777

RESUMEN

The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 µM) than pure CLA (IC50 = 17.15 ± 5.11 µM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.


Asunto(s)
Quitosano , Taninos Hidrolizables , Nanopartículas , Neoplasias , Animales , Ratones , Ácido Hialurónico , Simulación del Acoplamiento Molecular , Sistemas de Liberación de Medicamentos
16.
Int Immunopharmacol ; 129: 111656, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340422

RESUMEN

Geraniin, a chemical component of the traditional Chinese medicine geranii herba, possesses anti-inflammatory and anti-oxidative activities. However, its anti-inflammatory role in managing NLRP3 inflammasome and pyroptosis remains to be elucidated. To investigate the anti-inflammation mechanism of geraniin, LPS-primed macrophages were incubated with classical activators of NLRP3 inflammasome (such as ATP, Nigericin, or MSU crystals), and MSU crystals were injected into the ankle joints of mice to establish an acute gouty arthritis model. The propidium iodide (PI) staining results showed that geraniin could restrain cell death in the ATP- or nigericin-stimulated bone marrow-derived macrophages (BMDMs). Geraniin decreased the release of lactate dehydrogenase (LDH) and interleukin (IL)-1ß from cytoplasm to cell supernatant. Geraniin also inhibited the expression of caspase-1 p20, IL-1ß in cell supernatant and N-terminal of gasdermin D (GSDMD-NT) while blocking the oligomerization of ASC to form speck. The inhibitory effects of geraniin on caspase-1 p20, IL-1ß, GSDMD-NT, and ASC speck were not observed in NLRP3 knockout (NLRP3-/-) BMDMs. Hence, the resistance of geraniin to inflammasome and pyroptosis was contingent upon NLRP3 presence. Geraniin reduced reactive oxygen species (ROS) production and maintained mitochondrial membrane potential while preventing interaction between ASC and NLRP3 protein. Additionally, geraniin diminished MSU crystal-induced mouse ankle joint swelling and IL-1ß expression. Geraniin blocked the recruitment of neutrophils and macrophages to the synovium of joints. Our results demonstrate that geraniin prevents the assembly of ASC and NLRP3 through its antioxidant effect, thereby inhibiting inflammasome activation, pyroptosis, and IL-1ß release to provide potential insights for gouty arthritis targeted therapy.


Asunto(s)
Artritis Gotosa , Glucósidos , Taninos Hidrolizables , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Artritis Gotosa/inducido químicamente , Piroptosis , Nigericina/farmacología , Macrófagos , Antiinflamatorios/efectos adversos , Adenosina Trifosfato/metabolismo , Caspasas/metabolismo , Interleucina-1beta/metabolismo
17.
Int Immunopharmacol ; 130: 111665, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38367463

RESUMEN

Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 µM did not reduce HaCaT cell viability, and PUN ≥ 3 µM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 µM and ≥ 3 µM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.


Asunto(s)
Taninos Hidrolizables , Granada (Fruta) , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Sirtuina 1/metabolismo , Interferón gamma/metabolismo , Granada (Fruta)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Células HaCaT , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo
18.
BMC Complement Med Ther ; 24(1): 93, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365729

RESUMEN

BACKGROUND: Multidrug resistance (MDR) in the family Enterobacteriaceae is a perniciously increasing threat to global health security. The discovery of new antimicrobials having the reversing drug resistance potential may contribute to augment and revive the antibiotic arsenal in hand. This study aimed to explore the anti-Enterobacteriaceae capability of bioactive polyphenols from Punica granatum (P. granatum) and their co-action with antibiotics against clinical isolates of Enterobacteriaceae predominantly prevalent in South Asian countries. METHODS: The Kandhari P. granatum (Pakistani origin) extracts were tested for anti-Enterobacteriaceae activity by agar well diffusion assay against MDR Salmonella enterica serovar Typhi, serovar Typhimurium and Escherichia coli. Predominant compounds of active extract were determined by mass spectrometry and screened for bioactivity by agar well diffusion and minimum inhibitory concentration (MIC) assay. The active punicalagin was further evaluated at sub-inhibitory concentrations (SICs) for coactivity with nine conventional antimicrobials using a disc diffusion assay followed by time-kill experiments that proceeded with SICs of punicalagin and antimicrobials. RESULTS: Among all P. granatum crude extracts, pomegranate peel methanol extract showed the largest inhibition zones of 25, 22 and 19 mm, and the MICs as 3.9, 7.8 and 7.8 mg/mL for S. typhi, S. typhimurium and E. coli, respectively. Punicalagin and ellagic acid were determined as predominant compounds by mass spectrometry. In plate assay, punicalagin (10 mg/mL) was active with hazy inhibition zones of 17, 14, and 13 mm against S. typhi, S. typhimurium and E. coli, respectively. However, in broth dilution assay punicalagin showed no MIC up to 10 mg/mL. The SICs 30 µg, 100 µg, and 500 µg of punicalagin combined with antimicrobials i.e., aminoglycoside, ß-lactam, and fluoroquinolone act in synergy against MDR strains with % increase in inhibition zone values varying from 3.4 ± 2.7% to 73.8 ± 8.4%. In time-kill curves, a significant decrease in cell density was observed with the SICs of antimicrobials/punicalagin (0.03-60 µg/mL/30, 100, 500 µg/mL of punicalagin) combinations. CONCLUSIONS: The P. granatum peel methanol extract exhibited antimicrobial activity against MDR Enterobacteriaceae pathogens. Punicalagin, the bacteriostatic flavonoid act as a concentration-dependent sensitizing agent for antimicrobials against Enterobacteriaceae. Our findings for the therapeutic punicalagin-antimicrobial combination prompt further evaluation of punicalagin as a potent activator for drugs, which otherwise remain less or inactive against MDR strains.


Asunto(s)
Antiinfecciosos , Taninos Hidrolizables , Granada (Fruta) , Antibacterianos/farmacología , Polifenoles , Enterobacteriaceae , Escherichia coli , Agar , Metanol , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Resistencia a Múltiples Medicamentos
19.
Exp Neurol ; 374: 114697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266765

RESUMEN

BACKGROUND: Stroke is one of the leading causes of death and long-term disability worldwide. Previous studies have found that corilagin has antioxidant, anti-inflammatory, anti-atherosclerotic and other pharmacological activities and has a protective effect against cardiac and cerebrovascular injury. OBJECTIVES: The aim of this study was to investigate the protective effects of corilagin against ischemic stroke and to elucidate the underlying molecular mechanisms using network pharmacology, molecular docking, and animal and cell experiments. METHODS: We investigated the potential of corilagin to ameliorate cerebral ischemia-reperfusion injury using in vivo rat middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) models. RESULTS: Our results suggest that corilagin may exert its anti-ischemic stroke effect by interacting with 92 key targets, including apoptosis-associated proteins (Bcl-2, Bax, caspase-3) and PI3K/Akt signaling pathway-related proteins. In vivo and in vitro experiments showed that corilagin treatment improved neurological deficits, attenuated cerebral infarct volume, and mitigated neuronal damage in MCAO/R rats. Corilagin treatment also enhanced the survival of PC12 cells exposed to OGD/R, reduced the rate of LDH leakage, inhibited cell apoptosis, and activated the PI3K/Akt signaling pathway. Importantly, the effects of corilagin on the PI3K/Akt signaling pathway and apoptosis-associated proteins were reversed by the PI3K-specific inhibitor LY294002. CONCLUSIONS: These results indicate that the molecular mechanism of the anti-ischemic effect of corilagin involves inhibiting neuronal apoptosis and activating the PI3K/Akt signaling pathway. These findings provide a theoretical and experimental basis for the further development and application of corilagin as a potential anti-ischemic stroke agent.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Glucósidos , Taninos Hidrolizables , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Farmacología en Red , Ratas Sprague-Dawley , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Apoptosis
20.
Phytomedicine ; 125: 155370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266440

RESUMEN

BACKGROUND: The emergence of immune checkpoint inhibitors, a novel class of immunotherapy drugs, represents a major breakthrough in cancer immunotherapy, substantially improving patient survival post-treatment. Blocking programmed death-ligand 1 (PD-L1) and programmed death protein-1 (PD-1) has demonstrated promising clinical results in various human cancer types. The US FDA has recently permitted only monoclonal antibody (mAb)-based PD-L1 or PD-1 blockers. Although these antibodies exhibit high antitumor efficacy, their size- and affinity-induced side effects limit their applicability. PURPOSE: As small-molecule-based PD-1/PD-L1 blockers capable of reducing the side effects of antibody therapies are needed, this study focuses on exploring natural ingredient-based small molecules that can target hPD-L1/PD-1 using herbal medicines and their components. METHODS: The antitumor potential of evening primrose (Oenothera biennis) root extract (EPRE), a globally utilized traditional herbal medicine, folk remedy, and functional food, was explored. A coculture system was established using human PD-L1-expressed murine MC38 cells (hPD-L1-MC38s) and CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) expressing humanized PD-1. The in vivo experiments utilized a colorectal cancer (CRC) C57BL/6 J mouse model bearing MC38 cells expressing humanized PD-L1 and PD-1 proteins. RESULTS: EPRE and its active compound oenothein B effectively hindered the molecular interaction between hPD-L1 and hPD-1. EPRE stimulated tumor-specific T lymphocytes of a hPD-L1/PD-1 CRC mice. This action resulted in the elevated infiltration of cytotoxic CD8+T lymphocytes and subsequent tumor growth reduction. Moreover, the combined therapy of oenothein B, a PD-1/PD-L1 blocker, and FOLFOX (5-fluorouracil plus oxaliplatin) cooperatively suppressed hPD-L1-MC38s growth in the ex vivo model through activated CD8+ TIL antitumor immune response. Oenothein B exhibited a high binding affinity for hPD-L1 and hPD-1. We believe that this study is the first to uncover the inhibitory effects of EPRE and its component, oenothein B, on PD-1/PD-L1 interactions. CONCLUSION: This study identified a promising small-molecule candidate from natural products that blocks the hPD-L1/PD-1 signaling pathway. These findings emphasize the potential of EPRE and oenothein B as effective anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Taninos Hidrolizables , Oenothera biennis , Humanos , Animales , Ratones , Oenothera biennis/metabolismo , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Ligandos , Ratones Endogámicos C57BL , Antineoplásicos/farmacología , Inmunoterapia/métodos , Neoplasias Colorrectales/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA