Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.384
Filtrar
1.
Sci Rep ; 14(1): 22938, 2024 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358540

RESUMEN

Activating transcription factor 4 (ATF4) plays a central role in the integrated stress response (ISR) and one overlapping branch of the unfolded protein response (UPR). We recently reported that the splicing inhibitor isoginkgetin (IGG) induced ATF4 protein along with several known ATF4-regulated transcripts in a response that resembled the ISR and UPR. However, the contribution of ATF4-dependent and -independent transcriptional responses to IGG exposure was not known. Here we used RNA-sequencing in HCT116 colon cancer cells and an isogenic subline lacking ATF4 to investigate the contribution of ATF4 to IGG-induced changes in gene expression. Approximately 85% of the IGG-responsive DEGs in HCT116 cells were also differentially expressed in response to the ER stressor thapsigargin (Tg) and these were enriched for genes associated with the UPR and ISR. Most of these were positively regulated by IGG with impaired responses in the ATF4-deficient cells. Nonetheless, there were DEGs that responded similarly in both cell lines. The ATF4-independent IGG-induced DEGs included several metal responsive transcripts encoding metallothionines and a zinc transporter. Taken together, the predominant IGG response was ATF4-dependent in these cells and resembled the UPR and ISR while a second less prominent response involved the ATF4-independent regulation of metal responsive mRNAs.


Asunto(s)
Factor de Transcripción Activador 4 , Biflavonoides , Humanos , Células HCT116 , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Biflavonoides/farmacología , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
2.
Genes Cells ; 29(10): 889-901, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39138929

RESUMEN

Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.


Asunto(s)
Diferenciación Celular , Megacariocitos , Respuesta de Proteína Desplegada , Humanos , Megacariocitos/metabolismo , Megacariocitos/citología , Estrés del Retículo Endoplásmico , Apoptosis , Tapsigargina/farmacología , Línea Celular , Acetato de Tetradecanoilforbol/farmacología
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000233

RESUMEN

The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Hepatocitos , Proteína Disulfuro Isomerasas , Transducción de Señal , Tunicamicina , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Hepatocitos/metabolismo , Animales , Tunicamicina/farmacología , Retículo Endoplásmico/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Línea Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Tapsigargina/farmacología , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Supervivencia Celular/efectos de los fármacos
4.
J Immunol Res ; 2024: 5537948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056014

RESUMEN

CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.


Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , Proliferación Celular , Células Dendríticas , Activación de Linfocitos , Mastocitos , Tapsigargina , Humanos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Tapsigargina/farmacología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Monocitos/inmunología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Citocinas/metabolismo , Imidazoles/farmacología , Línea Celular
5.
Cell Biochem Biophys ; 82(3): 2285-2296, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38824236

RESUMEN

Fatty acid synthase (FASN) catalyzes the rate-limiting step of cellular lipogenesis. FASN expression is upregulated in various types of cancer cells, implying that FASN is a potential target for cancer therapy. 2-Deoxy-D-glucose (2-DG) specifically targets cancer cells by inhibiting glycolysis and glucose metabolism, resulting in multiple anticancer effects. However, whether the effects of 2-DG involve lipogenic metabolism remains to be elucidated. We investigated the effect of 2-DG administration on FASN expression in HeLa human cervical cancer cells. 2-DG treatment for 24 h decreased FASN mRNA and protein levels and suppressed the activity of an exogenous rat Fasn promoter. The use of a chemical activator or inhibitors or of a mammalian expression plasmid showed that neither AMPK nor the Sp1 transcription factor is responsible for the inhibitory effect of 2-DG on FASN expression. Administration of thapsigargin, an endoplasmic reticulum (ER) stress inducer, or 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), a site 1 protease inhibitor, mimicked the inhibitory effect of 2-DG on FASN expression. 2-DG did not further decrease FASN expression in the presence of thapsigargin or AEBSF. Site 1 protease mediates activation of ATF6, an ER stress mediator, as well as sterol regulatory element-binding protein 1 (SREBP1), a robust transcription factor for FASN. Administration of 2-DG or thapsigargin for 24 h suppressed activation of ATF6 and SREBP1, as did AEBSF. We speculated that these effects of 2-DG or thapsigargin are due to feedback inhibition via increased GRP78 expression following ER stress. Supporting this, exogenous overexpression of GRP78 in HeLa cells suppressed SREBP1 activation and Fasn promoter activity. These results suggest that 2-DG suppresses FASN expression via an ER stress-dependent pathway, providing new insight into the molecular basis of FASN regulation in cancer.


Asunto(s)
Desoxiglucosa , Regulación hacia Abajo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Animales , Humanos , Ratas , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Desoxiglucosa/farmacología , Regulación hacia Abajo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo I/genética , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/genética , Células HeLa , Regiones Promotoras Genéticas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Tapsigargina/farmacología
6.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727305

RESUMEN

BACKGROUND: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.


Asunto(s)
Apoptosis , SARS-CoV-2 , Tapsigargina , Tunicamicina , Respuesta de Proteína Desplegada , Humanos , Apoptosis/efectos de los fármacos , COVID-19/virología , COVID-19/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transducción de Señal/efectos de los fármacos , Tapsigargina/farmacología , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
7.
Autophagy ; 20(8): 1854-1867, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38566314

RESUMEN

The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.


Asunto(s)
Factor de Transcripción Activador 6 , Estrés del Retículo Endoplásmico , Lisosomas , Serina-Treonina Quinasas TOR , Tapsigargina , Proteína p53 Supresora de Tumor , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/genética , Mutación/genética , Línea Celular Tumoral , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Tunicamicina/farmacología , Proteína 1 de la Membrana Asociada a los Lisosomas
8.
Open Biol ; 14(4): 240001, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653331

RESUMEN

Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Calcio , Optogenética , Proteínas Quinasas Activadas por AMP/metabolismo , Calcio/metabolismo , Señalización del Calcio , Activación Enzimática , Ionomicina/farmacología , Optogenética/métodos , Tapsigargina/farmacología
9.
Immunopharmacol Immunotoxicol ; 46(2): 192-198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147028

RESUMEN

OBJECTIVE: Endoplasmic reticulum stress (ERS) and Toll-like receptor 2 (TLR2) signaling play an important role in inflammatory bowel disease (IBD); however, the link between TLR2 and ERS in IBD is unclear. This study investigated whether Thapsigargin (TG) -induced ER protein expression levels contributed to TLR2-mediated inflammatory response. METHODS: The THP-1 cells were treated with TLR2 agonist (Pam3CSK4), ERS inducer Thapsigargin (TG) or inhibitor (TUDCA). The mRNA expressions of TLR1-TLR10 were detected by qPCR. The production and secretion of inflammatory factors were detected by PCR and ELISA. Immunohistochemistry was used to detect the expressions of GRP78 and TLR2 in the intestinal mucosa of patients with Crohn's disease (CD). The IBD mouse model was established by TNBS in the modeling group. ERS inhibitor (TUDCA) was used in the treatment group. RESULTS: The expression of TLRs was detected via polymerase chain reaction (PCR) in THP-1 cells treated by ERS agonist Thapsigargin (TG). According to the findings, TG could promote TLR2 and TLR5 expression. Subsequently, in TLR2 agonist Pam3CSK4 induced THP-1 cells, TG could lead to increased expression of the inflammatory factors such as TNF-α, IL-1ß and IL-8, and ERS inhibitor (TUDCA) could block this effect. However, Pam3CSK4 did not significantly impact the GRP78 and CHOP expression. Based upon the immunohistochemical results, TLR2 and GRP78 expression were significantly increased in the intestinal mucosa of patients with Crohn's disease (CD). For in vivo experiments, TUDCA displayed the ability to inhibit intestinal mucosal inflammation and reduce GRP78 and TLR2 proteins. CONCLUSIONS: ERS and TLR2 is upregulated in inflammatory bowel disease, ERS may promote TLR2 pathway-mediated inflammatory response. Moreover, ERS and TLR2 signaling could be novel therapeutic targets for IBD.


Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Ácido Tauroquenodesoxicólico , Ratones , Animales , Humanos , Receptor Toll-Like 2/metabolismo , Chaperón BiP del Retículo Endoplásmico , Tapsigargina/farmacología , Estrés del Retículo Endoplásmico
10.
PeerJ ; 11: e16683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130926

RESUMEN

Background: Thapsigargin (Tg) is a compound that inhibits the SERCA calcium transporter leading to decreased endoplasmic reticulum (ER) Ca2+ levels. Many ER chaperones are required for proper folding of membrane-associated and secreted proteins, and they are Ca2+ dependent. Therefore, Tg leads to the accumulation of misfolded proteins in the ER, activating the unfolded protein response (UPR) to help restore homeostasis. Tg reportedly induces cell cycle arrest and apoptosis in many cell types but how these changes are linked to the UPR remains unclear. The activating transcription factor 4 (ATF4) plays a key role in regulating ER stress-induced gene expression so we sought to determine if ATF4 is required for Tg-induced cell cycle arrest and apoptosis using ATF4-deficient cells. Methods: Two-parameter flow cytometric analysis of DNA replication and DNA content was used to assess the effects of Tg on cell cycle distribution in isogenic HCT116-derived cell lines either expressing or lacking ATF4. For comparison, we similarly assessed the Tg response in isogenic cell lines deleted of the p53 tumour suppressor and the p53-regulated p21WAF1 cyclin-dependent kinase inhibitor important in G1 and G2 arrests induced by DNA damage. Results: Tg led to a large depletion of the S phase population with a prominent increase in the proportion of HCT116 cells in the G1 phase of the cell cycle. Importantly, this effect was largely independent of ATF4. We found that loss of p21WAF1 but not p53 permitted Tg treated cells to enter S phase and synthesize DNA. Therefore, p21WAF1plays an important role in these Tg-induced cell cycle alterations while ATF4 and p53 do not. Remarkably, the ATF4-, p53-and p21WAF1-deficient cell lines were all more sensitive to Tg-induced apoptosis. Taken together, p21WAF1 plays a larger role in regulating Tg-induced G1 and G2 arrests than ATF4 or p53 but these proteins similarly contribute to protection from Tg-induced apoptosis. This work highlights the complex network of stress responses that are activated in response to ER stress.


Asunto(s)
Factor de Transcripción Activador 4 , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Tapsigargina/farmacología , Factor de Transcripción Activador 4/genética , Línea Celular Tumoral , ADN , Quinasas Ciclina-Dependientes/metabolismo
11.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012567

RESUMEN

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Proteínas de Fusión bcr-abl , Fosforilación Oxidativa , Tapsigargina/farmacología , Tapsigargina/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores Enzimáticos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Oligomicinas/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis
12.
Cell Commun Signal ; 21(1): 307, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904178

RESUMEN

Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.


Asunto(s)
Retículo Endoplásmico , Vejiga Urinaria , Humanos , Estrés del Retículo Endoplásmico , Citoesqueleto , Tapsigargina/farmacología
13.
Int J Mol Med ; 51(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37026514

RESUMEN

Salusin­α and adiponectin, are vasoactive peptides with numerous similar biological effects related to lipid metabolism. Adiponectin has been shown to reduce fatty acid oxidation and to inhibit lipid synthesis of liver cells through its receptor, adiponectin receptor 2 (AdipoR2), but whether salusin­α is able to interact with AdipoR2, was not previously reported. To investigate this, in vitro experiments were carried out. The overexpression and interference recombinant plasmids were constructed with salusin­α. The lentiviral expression systems of salusin­α overexpression and interference were respectively synthesized in 293T cells, and 293T cells were infected with the lentivirus. Finally, the association between salusin­α and AdipoR2 was analyzed by semi­quantitative PCR. Subsequently, HepG2 cells were also infected with these viruses. The expression levels of AdipoR2, peroxisome proliferator­activated receptor­α (PPARα), apolipoprotein A5 (ApoA5) and sterol regulatory element­binding transcription factor 1 (SREBP­1c) were detected by western blotting, and AdipoR2 inhibitor (thapsigargin) and agonist [4­phenyl butyric acid (PBA)] were used to observe the resultant changes in the aforementioned molecules. The results obtained revealed that the overexpression of salusin­α increased the level of AdipoR2 in 293T and HepG2 cells, led to an upregulation of the levels of PPARα and ApoA5, and inhibited the expression of SREBP­1c, whereas the salusin­α interference lentivirus exerted the opposite effects. Notably, thapsigargin inhibited the expression of AdipoR2, PPARα and ApoA5 in HepG2 cells of pHAGE­Salusin­α group, and caused an increase in the level of SREBP­1c, whereas the opposite effects were observed in pLKO.1­shSalusin­α#1 group upon treatment with PBA. Taken together, these data demonstrated that overexpression of salusin­α upregulated AdipoR2, which in turn activated the PPARα/ApoA5/SREBP­1c signaling pathway to inhibit lipid synthesis in HepG2 cells, thereby providing theoretical data on which to base the clinical application of salusin­α as a novel peptide for molecular intervention in fatty liver disease.


Asunto(s)
Adiponectina , PPAR alfa , Humanos , Células Hep G2 , PPAR alfa/genética , PPAR alfa/metabolismo , Apolipoproteína A-V/metabolismo , Adiponectina/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Tapsigargina/farmacología , Metabolismo de los Lípidos
14.
Biol Pharm Bull ; 46(4): 630-635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005308

RESUMEN

The improvement of type 2 diabetes mellitus induced by naturally occurring polyphenols, known as flavonoids, has received considerable attention. However, there is a dearth of information regarding the effect of the trihydroxyflavone apigenin on pancreatic ß-cell function. In the present study, the anti-diabetic effect of apigenin on pancreatic ß-cell insulin secretion, apoptosis, and the mechanism underlying its anti-diabetic effects, were investigated in the INS-ID ß-cell line. The results showed that apigenin concentration-dependently facilitated 11.1-mM glucose-induced insulin secretion, which peaked at 30 µM. Apigenin also concentration-dependently inhibited the expression of endoplasmic reticulum (ER) stress signaling proteins, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3, which was elevated by thapsigargin in INS-1D cells, with peak suppression at 30 µM. This was strongly correlated with the results of flow cytometric analysis of annexin V/propidium iodide (PI) staining and DNA fragmentation analysis. Moreover, the increased expression of thioredoxin-interacting protein (TXNIP) induced by thapsigargin was remarkably reduced by apigenin in a concentration-dependent manner. These results suggest that apigenin is an attractive candidate with remarkable and potent anti-diabetic effects on ß-cells, which are mediated by facilitating glucose-stimulated insulin secretion and preventing ER stress-mediated ß-cell apoptosis, the latter of which may be possibly mediated by reduced expression of CHOP and TXNIP, thereby promoting ß-cell survival and function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Apigenina/farmacología , Tapsigargina/metabolismo , Tapsigargina/farmacología , Apoptosis , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Factor de Transcripción CHOP/metabolismo
15.
Cells ; 11(20)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291093

RESUMEN

Calcium signalling in platelets through store operated Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) mechanisms is crucial for platelet activation and function. Orai1 proteins have been implicated in platelet's SOCE. In this study we evaluated the contribution of Orai1 proteins to these processes using washed platelets from adult mice from both genders with platelet-specific deletion of the Orai1 gene (Orai1flox/flox; Pf4-Cre termed as Orai1Plt-KO) since mice with ubiquitous Orai1 deficiency show early lethality. Platelet aggregation as well as Ca2+ entry and release were measured in vitro following stimulation with collagen, collagen related peptide (CRP), thromboxane A2 analogue U46619, thrombin, ADP and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin, respectively. SOCE and aggregation induced by Thapsigargin up to a concentration of 0.3 µM was abrogated in Orai1-deficient platelets. Receptor-operated Ca2+-entry and/or platelet aggregation induced by CRP, U46619 or thrombin were partially affected by Orai1 deletion depending on the gender. In contrast, ADP-, collagen- and CRP-induced aggregation was comparable in Orai1Plt-KO platelets and control cells over the entire concentration range. Our results reinforce the indispensability of Orai1 proteins for SOCE in murine platelets, contribute to understand its role in agonist-dependent signalling and emphasize the importance to analyse platelets from both genders.


Asunto(s)
Plaquetas , Calcio , Proteína ORAI1 , Animales , Femenino , Masculino , Ratones , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Plaquetas/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Colágeno/metabolismo , Proteína ORAI1/metabolismo , Péptidos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Tapsigargina/farmacología , Trombina/farmacología , Tromboxano A2/metabolismo
16.
Iran J Allergy Asthma Immunol ; 21(4): 418-428, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36243930

RESUMEN

Fibroblast-like synoviocytes (FLSs) play a major role in the pathogenesis of rheumatoid arthritis (RA). Endoplasmic reticulum (ER) stress and dysregulation of unfolded protein response are involved in the resistance to apoptosis of FLSs in RA (RA-FLSs). MicroRNA (MiR)-211 plays an important role in controlling ER stress and apoptotic genes in a PKR-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-dependent manner. We investigated the effect of miR-211-5p overexpression on ER stress and apoptotic genes in RA-FLSs. FLSs were isolated from synovial tissues of trauma (n=10) and RA (n=10) patients. MiR-211-5p and mRNA expression of the selected genes involved in the PERK pathway and apoptosis regulation were measured in RA, trauma, and thapsigargin (Tg)-treated RA-FLSs. Afterward, Tg-treated RA-FLSs following miR-211-5p overexpression were evaluated for miR-211-5p and mRNA levels of the study genes. The expression of miR-211-5p, PERK, BAX, and BCL2 showed no differences between RA and trauma. However, the expression of ATF4 and BCL-XL showed a significant increase in trauma. In addition, the levels of C/EBP homologous protein (CHOP) and MCL1 indicated a significant increase in RA-FLSs. Tg treatment significantly increased the expression of PERK, ATF4, and CHOP in RA-FLSs with no effect on miR-211-5p, BAX, BCL2, BCL-XL, and MCL1. Furthermore, Tg treatment following miR-211-5p overexpression in RA-FLSs showed a significant increase in levels of miR-211-5p with no changes in apoptotic genes. MiR-211-5p overexpression in stimulated RA-FLSs did not alter the levels of selected genes involved in apoptosis regulation. However, more investigations are necessary to determine the ER stress role in apoptosis regulation in RA-FLSs.


Asunto(s)
Artritis Reumatoide , MicroARNs , Sinoviocitos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/farmacología , Apoptosis/genética , Artritis Reumatoide/genética , Proliferación Celular , Células Cultivadas , Estrés del Retículo Endoplásmico/genética , Fibroblastos , Humanos , MicroARNs/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , ARN Mensajero/metabolismo , Sinoviocitos/metabolismo , Sinoviocitos/patología , Tapsigargina/metabolismo , Tapsigargina/farmacología , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología
17.
Arch Med Res ; 53(6): 562-573, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35999060

RESUMEN

BACKGROUND: Endoplasmic reticulum stress (ER stress) is involved in the development and progression of various forms of heart disease and may lead to myocardial apoptosis. Sphingosine-1-phosphate (S1P) possesses cardioprotective properties, including anti-apoptosis. However, little is known about the link between S1P and ER stress-induced myocardial apoptosis. This study investigated the regulatory role of S1P in ER stress-induced apoptosis in cardiomyocytes. METHODS: ER stress and myocardial apoptosis were induced by transverse aortic constriction (TAC) or tunicamycin in mice, which were then treated with 2-acetyl-5-tetrahydroxybutyl imidazole (THI) or S1P. AC16 cells were treated with tunicamycin or thapsigargin, or pretreated with S1P, sphingosine-1-phosphate receptor (S1PR) subtype antagonists, S1PR1 agonist, and PI3K and MEK inhibitors. Cardiac function, the level of S1P in plasma and heart, ER stress markers, cell viability, and apoptosis were detected. RESULTS: S1P reduced the expression of ER stress-related molecules and ER stress-induced myocardial apoptosis in mice subjected to TAC or an injection of tunicamycin. Furthermore, in AC16 cells exposed to thapsigargin or tunicamycin, S1P decreased the expression of ER stress-related molecules, promoting cell viability and survival. Nevertheless, the S1PR1 antagonist abrogated the protection of S1P. Subsequently, in TAC S1PR1 heterozygous (S1PR1+/-) mice, S1P had no effect on ER stress and apoptosis in cardiomyocytes. Notably, in vitro, the impact of anti-ER stress-induced myocardial apoptosis by the S1PR1 agonist was reversed by PI3K and MEK inhibitors. CONCLUSION: This study is the first to demonstrate that S1P relieves ER stress-induced myocardial apoptosis via S1PR1/AKT and S1PR1/ERK1/2, which are potential therapeutic targets for heart disease.


Asunto(s)
Estrés del Retículo Endoplásmico , Cardiopatías , Animales , Imidazoles/farmacología , Lisofosfolípidos/farmacología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato , Tapsigargina/farmacología , Tunicamicina/farmacología
18.
J Biol Chem ; 298(9): 102336, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931111

RESUMEN

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.


Asunto(s)
Colorantes Fluorescentes , Quelantes del Hierro , Mitocondrias , Animales , Calcio/metabolismo , Cationes Bivalentes/análisis , Células Cultivadas , Fluorescencia , Colorantes Fluorescentes/química , Quelantes del Hierro/análisis , Ratones , Mitocondrias/química , Proteínas Mitocondriales/química , Oxiquinolina/química , Rodamina 123 , Tapsigargina/farmacología
19.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887321

RESUMEN

Drug resistance causes therapeutic failure in refractory cancer. Cancer drug resistance stems from various factors, such as patient heterogeneity and genetic alterations in somatic cancer cells, including those from identical tissues. Generally, resistance is intrinsic for cancers; however, cancer resistance becomes common owing to an increased drug treatment. Unfortunately, overcoming this issue is not yet possible. The present study aimed to evaluate a clinical approach using candidate compounds 19 and 23, which are sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) inhibitors, discovered using the evolutionary chemical binding similarity method. mRNA sequencing indicated SERCA as the dominant marker of patient-derived anti-cancer drug-resistant hepatocellular carcinoma (HCC), but not of patient-derived anti-cancer drug-sensitive HCC. Candidate compounds 19 and 23 led to significant tumor shrinkage in a tumor xenograft model of anti-cancer drug-resistant patient-derived HCC cells. Our results might be clinically significant for the development of novel combinatorial strategies that selectively and efficiently target highly malignant cells such as drug-resistant and cancer stem-like cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Calcio/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología
20.
Cells ; 11(13)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35805121

RESUMEN

The overexpression of the Orai1 channel inhibits SOCE when using the Ca2+ readdition protocol. However, we found that HeLa cells overexpressing the Orai1 channel displayed enhanced Ca2+ entry and a limited ER depletion in response to the combination of ATP and thapsigargin (TG) in the presence of external Ca2+. As these effects require the combination of an agonist and TG, we decided to study whether the phosphorylation of Orai1 S27/S30 residues had any role using two different mutants: Orai1-S27/30A (O1-AA, phosphorylation-resistant) and Orai1-S27/30D (O1-DD, phosphomimetic). Both O1-wt and O1-AA supported enhanced Ca2+ entry, but this was not the case with O1-E106A (dead-pore mutant), O1-DD, and O1-AA-E106A, while O1-wt, O1-E106A, and O1-DD inhibited the ATP and TG-induced reduction of ER [Ca2+], suggesting that the phosphorylation of O1 S27/30 interferes with the IP3R activity. O1-wt and O1-DD displayed an increased interaction with IP3R in response to ATP and TG; however, the O1-AA channel decreased this interaction. The expression of mCherry-O1-AA increased the frequency of ATP-induced sinusoidal [Ca2+]i oscillations, while mCherry-O1-wt and mCherry-O1-DD decreased this frequency. These data suggest that the combination of ATP and TG stimulates Ca2+ entry, and the phosphorylation of Orai1 S27/30 residues by PKC reduces IP3R-mediated Ca2+ release.


Asunto(s)
Canales de Calcio , Calcio , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Calcio/metabolismo , Canales de Calcio/metabolismo , Células HeLa , Humanos , Proteína ORAI1/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA