Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 784
Filtrar
1.
Poult Sci ; 103(7): 103820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759565

RESUMEN

The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.


Asunto(s)
Proteínas Aviares , Pollos , Hormona Liberadora de Gonadotropina , Precursores de Proteínas , Taquicininas , Animales , Pollos/genética , Pollos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Taquicininas/genética , Taquicininas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Estrógenos/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Femenino , Masculino
2.
Nat Commun ; 14(1): 8125, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065934

RESUMEN

Peptide hormones and neuropeptides are signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we provide evidence for the endogenous presence of a sequence diverse class of blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic physiologic regulation. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide cleaved from the prepropeptide region of full-length GDF15 that, like the canonical GDF15 hormone, also reduces food intake and body weight. Capped peptides are a potentially large class of signaling molecules with potential to broadly regulate cell-cell communication in mammalian physiology.


Asunto(s)
Neuropéptidos , Hormonas Peptídicas , Animales , Neuropéptidos/metabolismo , Taquicininas/metabolismo , Comunicación Celular , Procesamiento Proteico-Postraduccional , Hormonas Peptídicas/metabolismo , Mamíferos/metabolismo
3.
Gene ; 879: 147592, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37356741

RESUMEN

Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshß) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.


Asunto(s)
Hipófisis , Taquicininas , Animales , Taquicininas/genética , Hipófisis/metabolismo , Hormona Luteinizante/metabolismo , Neuroquinina B/genética , Neuroquinina B/metabolismo , Peces/genética , Peces/metabolismo , ARN Mensajero/metabolismo , Mamíferos/genética
4.
Reprod Sci ; 30(1): 258-269, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35739351

RESUMEN

Neurokinin B (NKB) and its cognate receptor, NK3R, play a key role in the regulation of reproduction. NKB belongs to the family of tachykinins, which also includes substance P and neurokinin A, both encoded by the by the gene TAC1, and hemokinin-1, encoded by the TAC4 gene. In addition to NK3R, tachykinin effects are mediated by NK1R and NK2R, encoded by the genes TACR1 and TACR2, respectively. The role of these other tachykinins and receptors in the regulation of women infertility is mainly unknown. We have analyzed the expression profile of TAC1, TAC4, TACR1, and TACR2 in mural granulosa and cumulus cells from women presenting different infertility etiologies, including polycystic ovarian syndrome, advanced maternal age, low ovarian response, and endometriosis. We also studied the expression of MME, the gene encoding neprilysin, the most important enzyme involved in tachykinin degradation. Our data show that TAC1, TAC4, TACR1, TACR2, and MME expression is dysregulated in a different manner depending on the etiology of women infertility. The abnormal expression of these tachykinins and their receptors might be involved in the decreased fertility of these patients, offering a new insight regarding the diagnosis and treatment of women infertility.


Asunto(s)
Células de la Granulosa , Infertilidad Femenina , Taquicininas , Femenino , Humanos , Células de la Granulosa/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Neprilisina , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
5.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35818835

RESUMEN

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Asunto(s)
Antineoplásicos , Melanoma , Adenosina Trifosfato , Animales , Antineoplásicos/farmacología , Calcio , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Mutación , Octopodiformes/química , Péptidos/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , ARN Mensajero , Especies Reactivas de Oxígeno , Taquicininas/genética , Taquicininas/uso terapéutico , Pez Cebra/genética
6.
Reprod Biol Endocrinol ; 20(1): 91, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729637

RESUMEN

BACKGROUND: Kisspeptin released from Kiss-1 neurons in the hypothalamus plays an essential role in the control of the hypothalamic-pituitary-gonadal axis by regulating the release of gonadotropin-releasing hormone (GnRH). In this study, we examined how androgen supplementation affects the characteristics of Kiss-1 neurons. METHODS: We used a Kiss-1-expressing mHypoA-55 cell model that originated from the arcuate nucleus (ARC) of the mouse hypothalamus. These cells are KNDy neurons that co-express neurokinin B (NKB) and dynorphin A (DynA). We stimulated these cells with androgens and examined them. We also examined the ARC region of the hypothalamus in ovary-intact female rats after supplementation with androgens. RESULTS: Stimulation of mHypoA-55 cells with 100 nM testosterone significantly increased Kiss-1 gene expression by 3.20 ± 0.44-fold; testosterone also increased kisspeptin protein expression. The expression of Tac3, the gene encoding NKB, was also increased by 2.69 ± 0.64-fold following stimulation of mHypoA-55 cells with 100 nM testosterone. DynA gene expression in these cells was unchanged by testosterone stimulation, but it was significantly reduced at the protein level. Dihydrotestosterone (DHT) had a similar effect to testosterone in mHypoA-55 cells; kisspeptin and NKB protein expression was significantly increased by DHT, whereas it significantly reduced DynA expression. In ovary-intact female rats, DTH administration significantly increased the gene expression of Kiss-1 and Tac3, but not DynA, in the arcuate nucleus. Exogenous NKB and DynA stimulation failed to modulate Kiss-1 gene expression in mHypoA-55 cells. Unlike androgen stimulation, prolactin stimulation did not modulate kisspeptin, NKB, or DynA protein expression in these cells. CONCLUSIONS: Our observations imply that hyperandrogenemia affects KNDy neurons and changes their neuronal characteristics by increasing kisspeptin and NKB levels and decreasing DynA levels. These changes might cause dysfunction of the hypothalamic-pituitary-gonadal axis.


Asunto(s)
Dinorfinas , Hiperandrogenismo , Andrógenos/metabolismo , Animales , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacología , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Hiperandrogenismo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratones , Neuroquinina B/genética , Neuroquinina B/metabolismo , Neuroquinina B/farmacología , Neuronas/metabolismo , Ratas , Taquicininas , Testosterona/metabolismo , Testosterona/farmacología
7.
Mol Cell Endocrinol ; 551: 111654, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35469849

RESUMEN

The mechanisms regulating puberty still remain elusive, as do the underlying causes for sex differences in puberty onset (girls before boys) and pubertal disorders. Neuroendocrine puberty onset is signified by increased pulsatile GnRH secretion, yet how and when various upstream reproductive neural circuits change developmentally to govern this process is poorly understood. We previously reported day-by-day peri-pubertal increases (Kiss1, Tac2) or decreases (Rfrp) in hypothalamic gene expression of female mice, with several brain mRNA changes preceding external pubertal markers. However, similar pubertal measures in males were not previously reported. Here, to identify possible neural sex differences underlying sex differences in puberty onset, we analyzed peri-pubertal males and directly compared them with female littermates. Kiss1 expression in male mice increased over the peri-pubertal period in both the AVPV and ARC nuclei but with lower levels than in females at several ages. Likewise, Tac2 expression in the male ARC increased between juvenile and older peri-pubertal stages but with levels lower than females at most ages. By contrast, both DMN Rfrp expressionand Rfrp neuronal activation strongly decreased in males between juvenile and peri-pubertal stages, but with similar levels as females. Neither ARC KNDy neuronal activation nor Kiss1r expression in GnRH neurons differed between males and females or changed with age. These findings delineate several peri-pubertal changes in neural populations in developing males, with notable sex differences in kisspeptin and NKB neuron developmental patterns. Whether these peri-pubertal hypothalamic sex differences underlie sex differences in puberty onset deserves future investigation.


Asunto(s)
Kisspeptinas , Taquicininas , Animales , Femenino , Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Kisspeptinas/biosíntesis , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones , Pubertad/genética , Caracteres Sexuales , Maduración Sexual/genética , Taquicininas/biosíntesis , Taquicininas/genética
8.
Dis Markers ; 2022: 8075285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178132

RESUMEN

OBJECTIVE: The goal of this work was to look at the expression and probable role of exosomal long noncoding RNA (lncRNA) GAS5 in gestational diabetes mellitus (GDM), as well as forecast the importance of its interaction with neuropeptides in the progression of the disease. METHODS: We divided 44 pregnant women visiting the obstetric outpatient clinics at the Affiliated Hospital of Guilin Medical College from January 2021 to December 2021 into healthy and GDM groups. We measured the expression levels of the lncRNA GAS5 in peripheral blood using PCR and compared the expression levels between the 2 groups. The Gene Expression Omnibus (GEO) database and the R software were used to analyse the differences in the genes expressed in the amniotic fluid cells in the GDM and normal groups. catRAPID was used to identify potential target proteins for GAS5. Key neuropeptide-related proteins and potential target proteins of GAS5 were extracted, and protein interaction networks were mapped. AlphaFold 2 was used to predict the structure of the target protein. The ClusPro tool was used to predict protein-protein interactions. ZDOCK was used to further confirm the protein-nucleic acid docking. RESULTS: The lncRNA GAS5 was downregulated in the peripheral blood of pregnant women with GDM compared with normal pregnant women. The subcellular localization sites of GAS5 were the nucleus, cytoplasm, and ribosome; in addition, GAS5 was present in exosomes. Intercellular interactions, including neuropeptide receptors, were increased in the amniotic fluid cells of patients with GDM. Venn diagram analysis yielded seven neuropeptide-related proteins and three GAS5 target proteins. Among them, HERC5/TAC1 interacted and GAS5 docked well with HERC5. CONCLUSION: The lncRNA GAS5 in the peripheral blood exosomes in patients with GDM may be a new target for the detection of GDM, and the interaction between GAS5 and HERC5/TAC1 may be involved in the pathogenesis of GDM.


Asunto(s)
Diabetes Gestacional/genética , Exosomas/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuropéptidos/fisiología , ARN Largo no Codificante/genética , Taquicininas/fisiología , Adulto , Femenino , Expresión Génica , Humanos , Embarazo
9.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948451

RESUMEN

Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or ß-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.


Asunto(s)
Asma/metabolismo , Péptidos/metabolismo , Receptores de Péptidos/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Neuropéptido Y/metabolismo , Neurotensina/metabolismo , Taquicininas/metabolismo , beta-Defensinas/metabolismo
10.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884698

RESUMEN

Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Peces/metabolismo , Hipófisis/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Animales , Carpas , Proteínas de Peces/genética , Receptores de Taquicininas/genética , Taquicininas/genética
11.
Nat Commun ; 12(1): 2496, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941789

RESUMEN

Memory formation is key for brain functioning. Uncovering the memory mechanisms is helping us to better understand neural processes in health and disease. Moreover, more specific treatments for fear-related disorders such as posttraumatic stress disorder and phobias may help to decrease their negative impact on mental health. In this line, the Tachykinin 2 (Tac2) pathway in the central amygdala (CeA) has been shown to be sufficient and necessary for the modulation of fear memory consolidation. CeA-Tac2 antagonism and its pharmacogenetic temporal inhibition impair fear memory in male mice. Surprisingly, we demonstrate here the opposite effect of Tac2 blockade on enhancing fear memory consolidation in females. Furthermore, we show that CeA-testosterone in males, CeA-estradiol in females and Akt/GSK3ß/ß-Catenin signaling both mediate the opposite-sex differential Tac2 pathway regulation of fear memory.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Consolidación de la Memoria/fisiología , Precursores de Proteínas/antagonistas & inhibidores , Taquicininas/antagonistas & inhibidores , Animales , Antipsicóticos/farmacología , Estradiol/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/farmacología , Precursores de Proteínas/metabolismo , Factores Sexuales , Transducción de Señal , Taquicininas/metabolismo , Testosterona/metabolismo
12.
Cell Rep ; 34(5): 108707, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535033

RESUMEN

RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(-) by previous studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated with the increased expression of ILF2 (n = 6). We also identify complex structural variations associated with high-level copy number amplifications. Moreover, an enrichment of focal deletions is found in TP53 mutant cases. Our results indicate that RPA(-) cases demonstrate tumor suppressor deletions and genome instability, but lack unique or recurrent genetic lesions compensating for the lack of RPAs. Larger WGS studies of RPA(-) cases are required to understand this important LUAD subset.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/genética , Taquicininas/metabolismo , Secuenciación Completa del Genoma/métodos , Humanos
13.
J Appl Toxicol ; 41(9): 1380-1389, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33569802

RESUMEN

Glia cells provide supportive functions to the central nervous system and can be compromised by environmental contaminants. The primary objective of this study was to characterize the effects of in vitro exposure to perfluorooctanoic acid, a persistent environmental contaminant and/or monocrotophos (MCP), a neurotoxic organophosphate that is rapidly metabolized, to astroglia SVG p12 cells. The endpoints evaluated include cell viability, intracellular glutamate levels as a marker of astrocyte homeostasis function, differential gene expression for selected proteins, which include inflammatory markers (tachykinin), astrocytosis (nestin), S100B, and metabolism enzymes (CYP1A1). The results from cell viability revealed significant differences from the controls at some of the concentrations tested. Also, intracellular glutamate levels were elevated at the 10-µM concentration for perfluorooctanoic acid (PFOA) as well as the 10-µM PFOA/5-µM MCP concentration. Gene expression results at 80-µM PFOA concentration revealed a significant increase in the expression of S100B, tachykinin and CYP1A1. A combination of 10-µM PFOA/20-µM MCP caused a significant decrease in the expression of tachykinin. Gene expression for MCP exposures produced a decrease at the 20-µM MCP concentration. Immunofluorescence results indicated an increase in nestin protein expression for the 20-µM concentration of MCP, which contradicted the gene expression at the same concentration tested. The results indicate that toxicity to glia cells can compromise critical glia functions and could be implicated in neurodegenerative diseases.


Asunto(s)
Astrocitos/efectos de los fármacos , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Insecticidas/toxicidad , Monocrotofos/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP1A1/biosíntesis , Contaminantes Ambientales/toxicidad , Femenino , Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Nestina/biosíntesis , Células PC12 , Embarazo , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/biosíntesis , Taquicininas/biosíntesis
14.
Gen Comp Endocrinol ; 302: 113688, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275935

RESUMEN

Neuropeptides comprise the largest class of neural and neuroendocrine signaling molecules. Vertebrate tachykinins (TKs) and the structurally-related invertebrate tachykinin-related peptides (TRPs) together form the largest neuropeptide superfamily, with a number of conserved neural and neuroendocrine functions across species. Arthropods, including crustaceans, have provided many insights into neuropeptide signaling and function. Crustacean tachykinin-related peptide occurs in endocrine organs and cells and in two of the major crustacean CNS components, the supraoesophageal ganglion ("brain") and the stomatogastric nervous system. However, little is known about TRP sources in the remaining major CNS component, the thoracic ganglion mass (TGM). To gain further insight into the function of this peptide, we aimed to identify intrinsic TRP sources in the TGM of the Jonah crab, Cancer borealis. We first adapted a clearing protocol to improve TRP immunoreactivity specifically in the TGM, which is a dense, fused mass of multiple ganglia in short-bodied crustaceans such as Cancer species of crabs. We verified that the clearing protocol avoided distortion of cell body morphology yet increased visibility of TRP immunoreactivity. Using confocal microscopy, we found TRP-immunoreactive (TRP-IR) axon tracts running the length of the TGM, TRP-IR neuropil in all ganglia, and approximately 110 TRP-IR somata distributed throughout the TGM, within and between ganglia. These somata likely represent both neural and neuroendocrine sources of TRP. Thus, there are many potential intrinsic sources of TRP in the TGM that are positioned to regulate behaviors such as food intake, locomotion, respiration, and reproduction.


Asunto(s)
Braquiuros , Neoplasias , Neuropéptidos , Animales , Sistema Nervioso Central , Ganglios , Ganglios de Invertebrados , Taquicininas
15.
Peptides ; 136: 170458, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248147

RESUMEN

The neurokinin-1 receptor plays a profound role in inflammatory processes and is involved in immune cell differentiation, cytokine release, and mast cell activation. Due to their similar peptide structures, the neurokinin-1 receptor does not discriminate between the endogenous ligands substance P (SP) and human hemokinin-1 (hHK-1), which both demonstrate biological receptor affinity. In addition, due to cross-reactivity, the current bioanalytical method of choice-immunoassays-also displays limitations in differentiating between these peptides. Thus, a recently developed mass spectrometric assay was utilized for the selective quantification of SP and hHK-1 in various biofluids and tissue. By applying the sample processing protocols developed, SP was quantified in porcine brain tissue (4.49 ± 0.53 nM), human saliva (113.3 ± 67.0 pM), and human seminal fluid (0.52 ± 0.15 nM) by mass spectrometric analysis. As previously reported, neither SP nor hHK-1 could be detected in human plasma by mass spectrometry. Comparison with analysis using a commercial immunoassay of the same plasma sample revealed SP like-immunoreactivity concentrations of 37.1-178.0 pM. The previously reported carboxylic acid of SP, whose identity was confirmed by high-resolution mass spectrometric analysis, did not show cross-reactivity in the applied immunoassay and did not contribute to SP-like immunoreactivity results. Subsequent compound discovery of the immunocaptured substance indicated the presence of a precursor of SP as possible cross-reactor in human plasma samples. The found cross-reactivity might be the cause for the high variance of SP plasma levels in former determinations.


Asunto(s)
Inflamación/genética , Receptores de Neuroquinina-1/aislamiento & purificación , Sustancia P/aislamiento & purificación , Taquicininas/aislamiento & purificación , Animales , Líquidos Corporales/química , Encéfalo/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Espectrometría de Masas , Péptidos/química , Péptidos/aislamiento & purificación , Receptores de Neuroquinina-1/química , Receptores de Neuroquinina-1/genética , Saliva/química , Semen/química , Sustancia P/química , Sustancia P/genética , Porcinos , Taquicininas/química , Taquicininas/genética
16.
Nat Commun ; 11(1): 5074, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033265

RESUMEN

Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct Aß low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch.


Asunto(s)
Red Nerviosa/fisiopatología , Prurito/fisiopatología , Tacto/fisiología , Animales , Conducta Animal , Inyecciones Espinales , Luz , Potenciales de la Membrana , Ratones Endogámicos C57BL , Neuronas/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Bombesina/metabolismo , Piel/patología , Médula Espinal/fisiopatología , Sinapsis/metabolismo , Taquicininas/metabolismo
17.
Endocrinology ; 161(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075809

RESUMEN

Androgens can affect the reproductive axis of both sexes. In healthy women, as in men, elevated exogenous androgens decrease gonad function and lower gonadotropin levels; such circumstances occur with anabolic steroid abuse or in transgender men (genetic XX individuals) taking androgen supplements. The neuroendocrine mechanisms by which endogenous or exogenous androgens regulate gonadotropin release, including aspects of pulsatile luteinizing hormone (LH) secretion, remain unknown. Because animal models are valuable for interrogating neural and pituitary mechanisms, we studied effects of androgens in the normal male physiological range on in vivo LH secretion parameters in female mice and in vitro LH secretion patterns from isolated female pituitaries. We also assessed androgen effects on hypothalamic and gonadotrope gene expression in female mice, which may contribute to altered LH secretion profiles. We used a nonaromatizable androgen, dihydrotestosterone (DHT), to isolate effects occurring specifically via androgen receptor (AR) signaling. Compared with control females, DHT-treated females exhibited markedly reduced in vivo LH pulsatility, with decreases in pulse frequency, amplitude, peak, and basal LH levels. Correlating with reduced LH pulsatility, DHT-treated females also exhibited suppressed arcuate nucleus Kiss1 and Tac2 expression. Separate from these neural effects, we determined in vitro that the female pituitary is directly inhibited by AR signaling, resulting in lower basal LH levels and reduced LH secretory responses to gonadotropin-releasing hormone pulses, along with lower gonadotropin gene expression. Thus, in normal adult females, male levels of androgen acting via AR can strongly inhibit the reproductive axis at both the neural and pituitary levels.


Asunto(s)
Andrógenos/farmacología , Dihidrotestosterona/farmacología , Hipotálamo/efectos de los fármacos , Kisspeptinas/metabolismo , Hormona Luteinizante/sangre , Neuronas/efectos de los fármacos , Precursores de Proteínas/metabolismo , Taquicininas/metabolismo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Ratones , Neuronas/metabolismo , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Precursores de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Taquicininas/genética
18.
Pflugers Arch ; 472(12): 1705-1717, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070237

RESUMEN

We demonstrated earlier that renal afferent pathways combine very likely "classical" neural signal transduction to the central nervous system and a substance P (SP)-dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.


Asunto(s)
Nefritis/metabolismo , Sistema Nervioso Simpático/metabolismo , Taquicininas/metabolismo , Animales , Aprepitant/farmacología , Capsaicina/farmacología , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/fisiopatología , Macrófagos/metabolismo , Masculino , Nefritis/fisiopatología , Antagonistas del Receptor de Neuroquinina-1/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo
19.
Genes Brain Behav ; 19(8): e12690, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32741046

RESUMEN

Dyskinesia induced by long-term L-Dopa (LID) therapy in Parkinson disease is associated with altered striatal function whose molecular bases remain unclear. Here, a transcriptomic approach was applied for comprehensive analysis of distinctively regulated genes in striatal tissue, their specific pathways, and functional- and disease-associated networks in a rodent model of LID. This approach has identified transforming growth factor beta type 1 (TGFß1) as a highly upregulated gene in dyskinetic animals. TGFß1 pathway is a top aberrantly regulated pathway in the striatum following LID development based on differentially expressed genes (> 1.5 fold change and P < 0.05). The induction of TGFß1 pathway specific genes, TGFß1, INHBA, AMHR2 and PMEPA1 was also associated with regulation of NPTX2, PDP1, SCG2, SYNPR, TAC1, TH, TNNT1 genes. Transcriptional network and upstream regulator analyses have identified AKT-centered functional and ERK-centered disease networks revealing the association of TGFß1, IL-1ß and TNFα with LID development. Therefore, results support that TGFß1 pathway is a major contributor to the pathogenic mechanisms of LID.


Asunto(s)
Discinesia Inducida por Medicamentos/metabolismo , Transducción de Señal , Transcriptoma , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Antiparkinsonianos/toxicidad , Encéfalo/metabolismo , Discinesia Inducida por Medicamentos/genética , Redes Reguladoras de Genes , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Levodopa/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Regulación hacia Arriba
20.
Clin Cancer Res ; 26(16): 4339-4348, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32430478

RESUMEN

PURPOSE: Low-dose CT screening can reduce lung cancer-related mortality. However, CT screening has an FDR of nearly 96%. We sought to assess whether urine samples can be a source for DNA methylation-based detection of non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN: This nested case-control study of subjects with suspicious nodules on CT imaging obtained plasma and urine samples preoperatively. Cases (n = 74) had pathologic confirmation of NSCLC. Controls (n = 27) had a noncancer diagnosis. We detected promoter methylation in plasma and urine samples using methylation on beads and quantitative methylation-specific real-time PCR for cancer-specific genes (CDO1, TAC1, HOXA7, HOXA9, SOX17, and ZFP42). RESULTS: DNA methylation at cancer-specific loci was detected in both plasma and urine, and was more frequent in patients with cancer compared with controls for all six genes in plasma and in CDO1, TAC1, HOXA9, and SOX17 in urine. Univariate and multivariate logistic regression analysis showed that methylation detection in each one of six genes in plasma and CDO1, TAC1, HOXA9, and SOX17 in urine were significantly associated with the diagnosis of NSCLC, independent of age, race, and smoking pack-years. When methylation was detected for three or more genes in both plasma and urine, the sensitivity and specificity for lung cancer diagnosis were 73% and 92%, respectively. CONCLUSIONS: DNA methylation-based biomarkers in plasma and urine could be useful as an adjunct to CT screening to guide decision-making regarding further invasive procedures in patients with pulmonary nodules.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Cisteína-Dioxigenasa/genética , Proteínas de Homeodominio/genética , Factores de Transcripción SOXF/genética , Taquicininas/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/orina , Cisteína-Dioxigenasa/sangre , Cisteína-Dioxigenasa/orina , Metilación de ADN/genética , Detección Precoz del Cáncer , Femenino , Proteínas de Homeodominio/sangre , Proteínas de Homeodominio/orina , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/sangre , Factores de Transcripción SOXF/orina , Taquicininas/sangre , Taquicininas/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA