Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
1.
Biomed Eng Online ; 23(1): 48, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760808

RESUMEN

Monitoring of ingestive activities is critically important for managing the health and wellness of individuals with various health conditions, including the elderly, diabetics, and individuals seeking better weight control. Monitoring swallowing events can be an ideal surrogate for developing streamlined methods for effective monitoring and quantification of eating or drinking events. Swallowing is an essential process for maintaining life. This seemingly simple process is the result of coordinated actions of several muscles and nerves in a complex fashion. In this study, we introduce automated methods for the detection and quantification of various eating and drinking activities. Wireless surface electromyography (sEMG) was used to detect chewing and swallowing from sEMG signals obtained from the sternocleidomastoid muscle, in addition to signals obtained from a wrist-mounted IMU sensor. A total of 4675 swallows were collected from 55 participants in the study. Multiple methods were employed to estimate bolus volumes in the case of fluid intake, including regression and classification models. Among the tested models, neural networks-based regression achieved an R2 of 0.88 and a root mean squared error of 0.2 (minimum bolus volume was 10 ml). Convolutional neural networks-based classification (when considering each bolus volume as a separate class) achieved an accuracy of over 99% using random cross-validation and around 66% using cross-subject validation. Multiple classification methods were also used for solid bolus type detection, including SVM and decision trees (DT), which achieved an accuracy above 99% with random validation and above 94% in cross-subject validation. Finally, regression models with both random and cross-subject validation were used for estimating the solid bolus volume with an R2 value that approached 1 and root mean squared error values as low as 0.00037 (minimum solid bolus weight was 3 gm). These reported results lay the foundation for a cost-effective and non-invasive method for monitoring swallowing activities which can be extremely beneficial in managing various chronic health conditions, such as diabetes and obesity.


Asunto(s)
Deglución , Electromiografía , Humanos , Deglución/fisiología , Masculino , Femenino , Automatización , Procesamiento de Señales Asistido por Computador , Adulto , Redes Neurales de la Computación , Tecnología Inalámbrica
2.
Nat Commun ; 15(1): 4017, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740759

RESUMEN

Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.


Asunto(s)
Estimulación Encefálica Profunda , Tecnología Inalámbrica , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Animales , Tecnología Inalámbrica/instrumentación , Ratas , Electrodos Implantados , Epilepsia/terapia , Masculino , Prótesis e Implantes , Ratas Sprague-Dawley , Transductores , Diseño de Equipo , Ondas Ultrasónicas
3.
ACS Nano ; 18(19): 12210-12224, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695533

RESUMEN

Accurate postoperative assessment of varying mechanical properties is crucial for customizing patient-specific treatments and optimizing rehabilitation strategies following Achilles tendon (AT) rupture and reconstruction surgery. This study introduces a wireless, chip-less, and immune-tolerant in vivo strain-sensing suture designed to continuously monitor mechanical stiffness variations in the reconstructed AT throughout the healing process. This innovative sensing suture integrates a standard medical suturing thread with a wireless fiber strain-sensing system, which incorporates a fiber strain sensor and a double-layered inductive coil for wireless readout. The winding design of Au nanoparticle-based fiber electrodes and a hollow core contribute to the fiber strain sensor's high sensitivity (factor of 6.2 and 15.1 pF for revised sensitivity), negligible hysteresis, and durability over 10,000 stretching cycles. To ensure biocompatibility and immune tolerance during extended in vivo periods, an antibiofouling lubricant layer was applied to the sensing suture. Using this sensing system, we successfully monitored the strain responses of the reconstructed AT in an in vivo porcine model. This facilitated the postoperative assessment of mechanical stiffness variations through a well-established analytical model during the healing period.


Asunto(s)
Materiales Biocompatibles , Suturas , Tecnología Inalámbrica , Tecnología Inalámbrica/instrumentación , Animales , Porcinos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tendón Calcáneo , Oro/química , Nanopartículas del Metal/química
4.
Nature ; 629(8014): 1047-1054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778108

RESUMEN

Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.


Asunto(s)
Elasticidad , Electrónica , Diseño de Equipo , Ondas de Radio , Piel , Estrés Mecánico , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Electrónica/instrumentación , Tecnología Inalámbrica/instrumentación , Monitoreo Fisiológico/instrumentación
5.
ACS Sens ; 9(4): 2156-2165, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38629405

RESUMEN

Anisotropic strain sensors capable of multidirectional sensing are crucial for advanced sensor applications in human motion detection. However, current anisotropic sensors encounter challenges in achieving a balance among high sensitivity, substantial stretchability, and a wide linear detection range. To address these challenges, a facile freeze-casting strategy was employed to construct oriented filler networks composed of carbon nanotubes and conductive carbon black within a brominated butyl rubber ionomer (iBIIR) matrix. The resulting anisotropic sensor based on the iBIIR composites exhibited distinct gauge factors (GF) in the parallel and vertical directions (GF∥ = 4.91, while GF⊥ = 2.24) and a broad linear detection range over a strain range of 190%. This feature enables the sensor to detect various human activities, including uniaxial pulse, finder bending, elbow bending, and cervical spine movements. Moreover, the ion-cross-linking network within the iBIIR, coupled with strong π-cation interactions between the fillers and iBIIR macromolecules, imparted high strength (12.3 MPa, nearly twice that of pure iBIIR) and an ultrahigh elongation at break (>1800%) to the composites. Furthermore, the sensor exhibited exceptional antibacterial effectiveness, surpassing 99% against both Escherichia coli and Staphylococcus aureus. Notably, the sensor was capable of wireless sensing. It is anticipated that anisotropic sensors will have extensive application prospects in flexible wearable devices.


Asunto(s)
Elastómeros , Nanotubos de Carbono , Tecnología Inalámbrica , Humanos , Elastómeros/química , Nanotubos de Carbono/química , Anisotropía , Dispositivos Electrónicos Vestibles , Hollín/química , Movimiento , Staphylococcus aureus/aislamiento & purificación
6.
Anal Chem ; 96(17): 6826-6835, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640511

RESUMEN

Tumor-marker immunosensors for rapid on-site detection have not yet been developed because of immunoreaction bottlenecks, such as shortening the reaction time and facilitating incubation. In this study, a gold-boron-nitrogen-codoped graphene (Au-BNG)-based immunosensor antenna was constructed for the rapid detection of neuron-specific enolase (NSE). A Au-BNG radiation electrode with dual functions of antibody protein fixation and signal transmission was developed for the first time. A radiation sample cell was constructed by embedding a radiation electrode into the groove of a poly(dimethylsiloxane) dielectric substrate. The constructed sense antenna achieves accurate detection of NSE with a range from 50 fg mL-1 to 40,000 pg mL-1 and a limit of detection of 10.99 fg mL-1, demonstrating excellent selectivity, stability, and reliability. The tumor-marker detection meter can provide NSE detection results as rapidly as within 2 min by using the new strategy of the microwave self-incubation of tumor markers. This antenna immunosensor is suitable for rapid detection in outpatient clinics and can be developed into household tumor-marker detectors, which would be significant in the early detection, long-term monitoring, and efficacy evaluation of tumors.


Asunto(s)
Técnicas Biosensibles , Oro , Grafito , Nitrógeno , Fosfopiruvato Hidratasa , Fosfopiruvato Hidratasa/análisis , Grafito/química , Oro/química , Humanos , Técnicas Biosensibles/métodos , Nitrógeno/química , Inmunoensayo/métodos , Límite de Detección , Biomarcadores de Tumor/análisis , Tecnología Inalámbrica
7.
ACS Sens ; 9(5): 2585-2595, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38642060

RESUMEN

Achieving ultrasensitive and rapid detection of 3-methylbutyraldehyde is crucial for monitoring chemical intermediate leakage in pharmaceutical and chemical industries as well as diagnosing ventilator-associated pneumonia by monitoring exhaled gas. However, developing a sensitive and rapid method for detecting 3-methylbutyraldehyde poses challenges. Herein, a wireless chemiresistive gas sensor based on a mesoporous ZnO-SnO2 heterostructure is fabricated to enable the ultrasensitive and rapid detection of 3-methylbutyraldehyde for the first time. The mesoporous ZnO-SnO2 heterostructure exhibits a uniform spherical shape (∼79 nm in diameter), a high specific surface area (54.8 m2 g-1), a small crystal size (∼4 nm), and a large pore size (6.7 nm). The gas sensor demonstrates high response (18.98@20 ppm), short response/recovery times (13/13 s), and a low detection limit (0.48 ppm) toward 3-methylbutyraldehyde. Furthermore, a real-time monitoring system is developed utilizing microelectromechanical systems gas sensors. The modification of amorphous ZnO on the mesoporous SnO2 pore wall can effectively increase the chemisorbed oxygen content and the thickness of the electron depletion layer at the gas-solid interface, which facilitates the interface redox reaction and enhances the sensing performance. This work presents an initial example of semiconductor metal oxide gas sensors for efficient detection of 3-methylbutyraldehyde that holds great potential for ensuring safety during chemical production and disease diagnosis.


Asunto(s)
Compuestos de Estaño , Óxido de Zinc , Óxido de Zinc/química , Compuestos de Estaño/química , Porosidad , Límite de Detección , Aldehídos/química , Gases/química , Gases/análisis , Tecnología Inalámbrica
8.
Biomater Adv ; 160: 213830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552500

RESUMEN

Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Glicerol/análogos & derivados , Nanopartículas , Poliésteres , Polímeros , Tecnología Inalámbrica , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Nanopartículas/química , Polímeros/química , Poliésteres/química , Curcumina/administración & dosificación , Curcumina/química , Glicerol/química , Masculino , Neoplasias de la Próstata/terapia , Antineoplásicos/administración & dosificación , Decanoatos/química , Nanofibras/química , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/métodos
9.
Nature ; 627(8002): 80-87, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418888

RESUMEN

Integrated microwave photonics (MWP) is an intriguing technology for the generation, transmission and manipulation of microwave signals in chip-scale optical systems1,2. In particular, ultrafast processing of analogue signals in the optical domain with high fidelity and low latency could enable a variety of applications such as MWP filters3-5, microwave signal processing6-9 and image recognition10,11. An ideal integrated MWP processing platform should have both an efficient and high-speed electro-optic modulation block to faithfully perform microwave-optic conversion at low power and also a low-loss functional photonic network to implement various signal-processing tasks. Moreover, large-scale, low-cost manufacturability is required to monolithically integrate the two building blocks on the same chip. Here we demonstrate such an integrated MWP processing engine based on a 4 inch wafer-scale thin-film lithium niobate platform. It can perform multipurpose tasks with processing bandwidths of up to 67 GHz at complementary metal-oxide-semiconductor (CMOS)-compatible voltages. We achieve ultrafast analogue computation, namely temporal integration and differentiation, at sampling rates of up to 256 giga samples per second, and deploy these functions to showcase three proof-of-concept applications: solving ordinary differential equations, generating ultra-wideband signals and detecting edges in images. We further leverage the image edge detector to realize a photonic-assisted image segmentation model that can effectively outline the boundaries of melanoma lesion in medical diagnostic images. Our ultrafast lithium niobate MWP engine could provide compact, low-latency and cost-effective solutions for future wireless communications, high-resolution radar and photonic artificial intelligence.


Asunto(s)
Microondas , Niobio , Óptica y Fotónica , Óxidos , Fotones , Inteligencia Artificial , Diagnóstico por Imagen/instrumentación , Diagnóstico por Imagen/métodos , Melanoma/diagnóstico por imagen , Melanoma/patología , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Radar , Tecnología Inalámbrica , Humanos
10.
IEEE Trans Nanobioscience ; 23(2): 355-367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349839

RESUMEN

Advancements in biotechnology and molecular communication have enabled the utilization of nanomachines in Wireless Body Area Networks (WBAN2) for applications such as drug delivery, cancer detection, and emergency rescue services. To study these networks effectively, it is essential to develop an ideal propagation model that includes the channel response between each pair of in-range nanomachines and accounts for the interference received at each receiver node. In this paper, we employ an advection-diffusion equation to obtain a deterministic channel matrix through a vascular WBAN2. Additionally, the closed forms of inter-symbol interference (ISI) and co-channel interference (CCI) are derived for both full duplex (FDX) and half duplex transmission (HDX) modes. By applying these deterministic formulations, we then present the stochastic equivalents of the ideal channel model and interference to provide an innovative communication model by simultaneously incorporating CCI, ISI, and background noise. Finally, we evaluate the results with numerous experiments and use signal-to-interference-plus-noise ratio (SINR) and capacity as metrics.


Asunto(s)
Biotecnología , Comunicación , Difusión , Sistemas de Liberación de Medicamentos , Redes de Comunicación de Computadores , Tecnología Inalámbrica
11.
Expert Opin Drug Deliv ; 21(3): 495-511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396366

RESUMEN

OBJECTIVE: Breast cancer is a global health concern that demands attention. In our contribution to addressing this disease, our study focuses on investigating a wireless micro-device for intratumoral drug delivery, utilizing electrochemical actuation. Microdevices have emerged as a promising approach in this field due to their ability to enable controlled injections in various applications. METHODS: Our study is conducted within a computational framework, employing models that simulate the behavior of the microdevice and drug discharge based on the principles of the ideal gas law. Furthermore, the distribution of the drug within the tissue is simulated, considering both diffusion and convection mechanisms. To predict the therapeutic response, a pharmacodynamic model is utilized, considering the chemotherapeutic effects and cell proliferation. RESULTS: The findings demonstrate that an effective current of 3 mA, along with an initial gas volume equal to the drug volume in the microdevice, optimizes drug delivery. Microdevices with multiple injection capabilities exhibit enhanced therapeutic efficacy, effectively suppressing cell proliferation. Additionally, tumors with lower microvascular density experience higher drug concentrations in the extracellular space, resulting in significant cell death in hypoxic regions. CONCLUSIONS: Achieving an efficient therapeutic response involves considering both the characteristics of the tumor microenvironment and the frequency of injections within a specific time frame.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , Sistemas de Liberación de Medicamentos , Técnicas Electroquímicas , Microambiente Tumoral , Tecnología Inalámbrica , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Sistemas de Liberación de Medicamentos/instrumentación , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Proliferación Celular/efectos de los fármacos , Modelos Biológicos , Simulación por Computador
12.
IEEE Trans Biomed Circuits Syst ; 18(1): 27-38, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37527296

RESUMEN

One challenge in designing RF wireless bioelectronic devices is the impact of the interaction between electromagnetic waves and host body tissues on far-field wireless performance. In this article, we investigate a peculiar phenomenon of implantable RF wireless devices within a small-scale host body related to the deformation of the directivity pattern. Radiation measurements of subcutaneously implanted antennas within rodent cadavers show that the direction of maximum radiation is not always identical with the direction to the closest body-air interface, as one would expect in larger-scale host bodies. For an implanted antenna in the back of a mouse, we observed the maximum directivity in the ventral direction with 4.6 dB greater gain compared to the nearest body-air interface direction. Analytic analysis within small-scale spherical body phantoms identifies two main factors for these results: the limited absorption losses due to the small body size relative to the operating wavelength and the high permittivity of the biological tissues of the host body. Due to these effects, the entire body acts as a dielectric resonator antenna, leading to deformations of the directivity pattern. These results are confirmed with the practical example of a wirelessly powered 2.4-GHz optogenetic implant, demonstrating the significance of the judicious placement of external antennas to take advantage of the deformation of the implanted antenna pattern. These findings emphasize the importance of carefully designing implantable RF wireless devices based on their placements and relative electrical dimensions in small-scale animal models.


Asunto(s)
Prótesis e Implantes , Tecnología Inalámbrica , Animales , Ratones , Fantasmas de Imagen
13.
Plast Reconstr Surg ; 153(3): 568e-572e, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184506

RESUMEN

SUMMARY: Fully implantable electronic devices in freely roaming animal models are useful in biomedical research, but their development is prohibitively resource intensive for many laboratories. The advent of miniaturized microcontrollers with onboard wireless data exchange capabilities has enabled cost-efficient development of myriad do-it-yourself electronic devices that are easily customizable with open-source software ( https://www.arduino.cc/ ). Likewise, the global proliferation of mobile devices has led to the development of low-cost miniaturized wireless power technology. The authors present a low-cost, rechargeable, and fully implantable electronic device comprising a commercially available, open-source, wirelessly powered microcontroller that is readily customizable with myriad readily available miniature sensors and actuators. The authors demonstrate the utility of this platform for chronic nerve stimulation in the freely roaming rat with intermittent wireless charging over 4 weeks. Device assembly was achieved within 2 hours and necessitated only basic soldering equipment. Component costs totaled $115 per device. Wireless data transfer and wireless recharging of device batteries was achieved within 30 minutes, and no harmful heat generation occurred during charging or discharging cycles, as measured by external thermography and internal device temperature monitoring. Wireless communication enabled triggered cathodic pulse stimulation of the facial nerve at various user-selected programmed frequencies (1, 5, and 10 Hz) for periods of 4 weeks or longer. This implantable electronic platform could be further miniaturized and expanded to study a vast array of biomedical research questions in live animal models. CLINICAL RELEVANCE STATEMENT: The clinical relevance of electrical stimulation in neural recovery remains controversial, and long-term neural stimulation in small animal models is challenging. We have developed a low-cost, fully implantable, wirelessly powered nerve stimulation device to facilitate further research in nerve stimulation in animal models.


Asunto(s)
Prótesis e Implantes , Tecnología Inalámbrica , Ratas , Animales , Diseño de Equipo , Modelos Animales , Computadoras de Mano
14.
IEEE Trans Biomed Circuits Syst ; 18(2): 369-382, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37938944

RESUMEN

Brain-machine interfaces (BMI) are widely adopted in neuroscience investigations and neural prosthetics, with sensing channel counts constantly increasing. These Investigations place increasing demands for high data rates and low-power implantable devices despite high tissue losses. The Impulse radio ultra-wideband (IR-UWB), a revived wireless technology for short-range radios, has been widely used in various applications. Since the requirements and solutions are application-oriented, in this review paper we focus on neural recording implants with high-data rates and ultra-low power requirements. We examine in detail the working principle, design methodology, performance, and implementations of different architectures of IR-UWB transceivers in a quantitative manner to draw a deep comparison and extract the bottlenecks and possible solutions concerning the dedicated application. Our analysis shows that current solutions rely on enhanced or combined modulation techniques to improve link margin. An in-depth study of prior-art publications that achieved Gbps data rates concludes that edge-combination architecture and non-coherent detectors are remarkable for transmitter and receiver, respectively. Although the aim to minimize power and improve data rate - defined as energy efficiency (pJ/b) - extending communication distance despite high tissue losses and limited power budget, good narrow-band interference (NBI) tolerance coexisted in the same frequency band of UWB systems, and compatibility with energy harvesting designs are among the critical challenges remained unsolved. Furthermore, we expect that the combination of artificial intelligence (AI) and the inherent advantages of UWB radios will pave the way for future improvements in BMIs.


Asunto(s)
Interfaces Cerebro-Computador , Prótesis Neurales , Inteligencia Artificial , Prótesis e Implantes , Tecnología Inalámbrica
15.
Artículo en Inglés | MEDLINE | ID: mdl-38083319

RESUMEN

In this work, a methodology for assessing the impact of implantation surgery on laboratory mice on behavior was created. The study included the design of several implants fabricated on various printed circuit board (PCB) technologies with overall diameters between 26-28mm and weights between 4.5-6.5g. 11 adult CD1 mice were implanted with the devices and their behavior was analyzed using common behavioral benchmark tests. The results show that implants designed to be 10% of the animal's body weight showed no adverse effects on mobility or social behavior. These results illustrate a method to identify and reduce the adverse behavioral changes inherent to device implantation. Additional considerations for implant surgery are provided. These results are validated with the implantation of a Bluetooth Low Energy (BLE) wireless sensor tag. The implanted wireless tag showed an average Received Signal Strength Indicator (RSSI) of 62.96dBm with a standard deviation of 4.95dBm and a variance of 24.5 dBm2. The high RSSI and variance values show that the implant was working well inside of the mouse's body and that the mouse was fully recovered and readily exploring its surroundings.Clinical Relevance-This work 1) studies the behavioral impact of implantable wireless biopotential devices. This will help clinical researchers conducting behavioral studies using sensor implants. 2) demonstrates a working implanted BLE wireless model inside of a mouse. Various wireless connectivity metrics are studied.


Asunto(s)
Roedores , Tecnología Inalámbrica , Ratones , Animales , Prótesis e Implantes , Tecnología , Conducta Social
16.
Adv Sci (Weinh) ; 10(33): e2303418, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37688344

RESUMEN

The properly applied pressure between the skin and hemostasis devices is an essential parameter for preventing bleeding and postoperative complications after a transradial procedure. However, this parameter is usually controlled based on the subjective judgment of doctors, which might cause insufficient hemostatic effect or thrombosis. Here this study develops a compact and wireless sensing system for continuously monitoring the pressure applied on the radial artery and wrist skin in clinical practice. A liquid metal (LM)-based all-soft pressure sensor is fabricated to enable conformal attachment between the device and skin even under large deformation conditions. The linear sensitivity of 0.007 kPa-1 among the wide pressure range of 0-100 kPa is achieved and the real-time detection data can be wirelessly transmitted to mobile clients as a reference pressure value. With these devices, detailed pressure data can be collected, analyzed, and stored for medical assistance as well as to improve surgery quality.


Asunto(s)
Hemostasis , Piel , Humanos , Tecnología Inalámbrica , Complicaciones Posoperatorias
17.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37447952

RESUMEN

Programmable Object Interfaces are increasingly intriguing researchers because of their broader applications, especially in the medical field. In a Wireless Body Area Network (WBAN), for example, patients' health can be monitored using clinical nano sensors. Exchanging such sensitive data requires a high level of security and protection against attacks. To that end, the literature is rich with security schemes that include the advanced encryption standard, secure hashing algorithm, and digital signatures that aim to secure the data exchange. However, such schemes elevate the time complexity, rendering the data transmission slower. Cognitive radio technology with a medical body area network system involves communication links between WBAN gateways, server and nano sensors, which renders the entire system vulnerable to security attacks. In this paper, a novel DNA-based encryption technique is proposed to secure medical data sharing between sensing devices and central repositories. It has less computational time throughout authentication, encryption, and decryption. Our analysis of experimental attack scenarios shows that our technique is better than its counterparts.


Asunto(s)
Seguridad Computacional , Telemedicina , Humanos , Redes de Comunicación de Computadores , Telemedicina/métodos , Tecnología Inalámbrica , Tecnología , Cognición
18.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299936

RESUMEN

Cogitive radio networks (CRNs) require high capacity and accuracy to detect the presence of licensed or primary users (PUs) in the sensed spectrum. In addition, they must correctly locate the spectral opportunities (holes) in order to be available to nonlicensed or secondary users (SUs). In this research, a centralized network of cognitive radios for monitoring a multiband spectrum in real time is proposed and implemented in a real wireless communication environment through generic communication devices such as software-defined radios (SDRs). Locally, each SU uses a monitoring technique based on sample entropy to determine spectrum occupancy. The determined features (power, bandwidth, and central frequency) of detected PUs are uploaded to a database. The uploaded data are then processed by a central entity. The objective of this work was to determine the number of PUs, their carrier frequency, bandwidth, and the spectral gaps in the sensed spectrum in a specific area through the construction of radioelectric environment maps (REMs). To this end, we compared the results of classical digital signal processing methods and neural networks performed by the central entity. Results show that both proposed cognitive networks (one working with a central entity using typical signal processing and one performing with neural networks) accurately locate PUs and give information to SUs to transmit, avoiding the hidden terminal problem. However, the best-performing cognitive radio network was the one working with neural networks to accurately detect PUs on both carrier frequency and bandwidth.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Humanos , Redes Neurales de la Computación , Comunicación , Supuración
19.
IEEE Trans Biomed Circuits Syst ; 17(4): 674-687, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37363841

RESUMEN

Localization has varied applications in biomedicine, such as wireless capsule endoscopy (WCE), detection of cancerous tissue, drug delivery, robotic surgeries, and brain mapping. Currently, most localization systems are battery-powered and suffer from issues regarding battery leakage and limited battery life, resulting in potential health hazards and inconveniences when using them for continuous health monitoring applications. This article proposes an entirely wireless and battery-less 2D localization system consisting of an integrated circuit (IC) that is wirelessly powered at a distance of 4 cm by a 40.68 MHz radio frequency (RF) power of only 2 W. The proposed localization system wirelessly transmits a locked sub-harmonic 13.56 MHz signal generated from the wirelessly received 40.68 MHz RF power signal, eliminating the need for a power-hungry oscillator. Additionally, the system, having a measurement latency of 11.3 ms, has also been verified to sense motion as small as 50 [Formula: see text] as well as measure the rate of motion up to 10 beats per minute, therefore extending its application to the detection of physiological motions such as diaphragm motion during breathing. The localizer has a small form factor of 17 mm × 12 mm × 0.2 mm and consumes an average power of 6 µW. Ex vivo measurements using the localizer inside the porcine intestine demonstrate a localization accuracy of less than 5 mm.


Asunto(s)
Endoscopía Capsular , Tecnología Inalámbrica , Porcinos , Animales , Sistemas de Atención de Punto , Ondas de Radio , Movimiento (Física)
20.
IEEE Trans Biomed Circuits Syst ; 17(4): 688-700, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37155376

RESUMEN

This article presents an implantable wireless system for remote hemodynamic monitoring, which enables direct, continuous (24/7), and simultaneous measurement of pulmonary arterial pressure (PAP) and cross-sectional area (CSA) of the artery. The implantable device, which measures 3.2 mm × 2 mm × 10 mm, comprises a piezoresistive pressure sensor, an ASIC implemented in 180-nm CMOS, a piezoelectric ultrasound (US) transducer, and a nitinol anchoring loop. An energy-efficient pressure monitoring system, which employs duty-cycling and spinning excitation technique, achieves 0.44 mmHg resolution in a pressure range from -135 mmHg to +135 mmHg and consumes 1.1 nJ conversion energy. The artery diameter monitoring system utilizes the inductive characteristic of the implant's anchoring loop and achieves 0.24 mm resolution within a diameter range of 20 mm to 30 mm, four times higher than echocardiography lateral resolution. The wireless US power and data platform enables simultaneous power and data transfer employing a single piezoelectric transducer in the implant. The system is characterized with an 8.5 cm tissue phantom and achieves a US link efficiency of 1.8%. The uplink data is transmitted by using an ASK modulation scheme parallel to the power transfer and achieves a modulation index of 26%. The implantable system is tested in an in-vitro experimental setup, which emulates the arterial blood flow, and accurately detects fast pressure peaks for systolic and diastolic pressure changes at both 1.28 MHz and 1.6 MHz US powering frequencies, with corresponding uplink data rates of 40 kbps and 50 kbps.


Asunto(s)
Insuficiencia Cardíaca , Monitorización Hemodinámica , Humanos , Prótesis e Implantes , Monitoreo Fisiológico , Tecnología Inalámbrica , Insuficiencia Cardíaca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA