Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.233
Filtrar
1.
Luminescence ; 39(7): e4831, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051545

RESUMEN

For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm. FT-IR analysis was employed to examine the functional groups. FE-SEM with EDX was used to assess the morphology and carry out an elemental analysis of the nanomaterials. Diffusion and MTT assays were used to study the antimicrobial and anticancer activities. The synthesized copper nanomaterials exhibited in-vitro cytotoxicity against human skin cancer (A431) cell lines. Green nanomaterial was examined against the methylene blue dye, photodegradation was reduced by up to 90.6% within 50 minutes. The copper nanomaterials synthesized in our study exhibit promising applications in biomedicine and environmental pollution research.


Asunto(s)
Proliferación Celular , Cobre , Cobre/química , Cobre/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Nanoestructuras/química , Tecnología Química Verde , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Luminiscencia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Hojas de la Planta/química , Antibacterianos/farmacología , Antibacterianos/química , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana , Sustancias Luminiscentes/química , Sustancias Luminiscentes/farmacología , Sustancias Luminiscentes/síntesis química
2.
Environ Sci Pollut Res Int ; 31(32): 44995-45010, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958855

RESUMEN

Nanoparticles, owing to their unique physicochemical properties, have garnered significant attention in various scientific disciplines, including materials science, chemistry, biology, and environmental engineering. In recent years, the synthesis of metal oxide nanoparticles, such as NiO, Fe2O3, ZnO, SnO2, and CuO via green routes, has gained attraction due to their diverse applications in fields ranging from catalysis and electronics to medicine and environmental remediation. This study focuses on the green synthesis of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles using Calotropis gigantea (Apple of Sodom) leaf extract as a reducing agent and stabilizer, with zinc nitrate (ZnNO3.6H2O) and copper nitrate (CuNO3.3H2O) as precursors. The hexagonal phase of ZnO and monoclinic plan structure of CuO with high crystallinity was confirmed by XRD and elemental composition by EDX analysis. With the help of an SEM image, particle size measured for CuO and ZnO using ImageJ software was found to be 56.08 nm and 46.49 nm, respectively. This study investigates the efficacy of nanoparticles in wastewater treatment, particularly focusing on methylene blue dye decolorization using the statistical processing of response surface methodology (RSM) using the Box-Behnken method. Additionally, it explores the impact of synthesized nanoparticles on seed growth enhancement, using Vigna radiata (green gram) seeds immersed in various doses of nanoparticles (0, 0.5, 1, 1.5, 2 mg/30 mL). Furthermore, the antibacterial activity of the nanoparticles against both gram-positive and gram-negative bacteria is evaluated. The results confirm the effectiveness of the materials for methylene blue dye removal, achieving 80.53% with CuO and 78.25% with ZnO. Significant seed growth was observed with a low nanoparticle dosage of 1.5 mg/30 mL, resulting in the highest seedling vigour index and germination percentage. This reduces the need for fertilizers and lessens environmental impact.


Asunto(s)
Antibacterianos , Cobre , Óxido de Zinc , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Cobre/química , Calotropis/química , Nanopartículas del Metal/química , Tecnología Química Verde , Colorantes/química
3.
An Acad Bras Cienc ; 96(suppl 1): e20230423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016356

RESUMEN

Benzothiazole compounds are known as an important bicyclic ring system with multiple applications. These compounds have a wide range of biological activities, including anticancer, antimicrobial, anti-inflammatory and antiviral activities. In this study, benzothiazole compounds were synthesized and their various biological activities were examined. The synthesized benzothiazoles were evaluated for their antimicrobial properties against various bacterial and fungal strains. The compound 6e is most active ligand in the series against bacteria and fungi as compared to standard antibiotics. Especially, this compound significant effect against Staphylococcus aureus (32.00 ± 1.73 mm). These compounds exhibited potent anticancer activity against gastrointestinal cancer cells, demonstrating their potential as therapeutic agents. The lowest antiproliferative response after administration of the compounds was observed in HCT116 cells, while the most effective antiproliferative response was observed in AGS cells (> 10 µg/mL). In all cell lines, 40 and 100 µg/mL application values of the selected compounds showed significant increases in the expression of caspase-3, 8 and 9. We also utilized a computational docking approach to investigate the interaction of these benzothiazoles with VEGFR-2 kinase. Our docking studies showed that compounds 6a and 6d may be promising therapeutic agents against gastrointestinal system cancers due to their ability to bind to VEGFR-2 kinase.


Asunto(s)
Antineoplásicos , Benzotiazoles , Microondas , Simulación del Acoplamiento Molecular , Humanos , Benzotiazoles/farmacología , Benzotiazoles/síntesis química , Benzotiazoles/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde , Proliferación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/síntesis química
4.
Environ Geochem Health ; 46(9): 327, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012555

RESUMEN

The novel bioengineered CuO nanoparticles were successfully synthesized directly using green chemistry, the nontoxic and renewable aqueous extract of waste papaya peel (Carica papaya) as a precursor. The XRD analysis indicated a monoclinic phase of CuO nanoparticles and a size of 20 nm, and the optical absorption analysis showed a peak in the 264 nm range. In TEM, the morphology of the NPs was observed to be almost spherical with a particle size of 15 nm. The CuO nanoparticles showed good efficiency in the degradation of methylene, obtaining up to 50% in 40 min using 6 mg in 60 ml of MB at 10 mg/L. The novel presented in this work derives from using rock minerals, from which we have directly obtained copper salt and copper oxide nanoparticles. This process not only utilizes ecological green chemistry but also offers an economic advantage by directly producing nanoparticles from the mineral instead of purchasing costly pure chemical reagents and employing novel nanomaterials to purify wastewater.


Asunto(s)
Colorantes , Cobre , Nanopartículas del Metal , Cobre/química , Colorantes/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Catálisis , Tecnología Química Verde/métodos , Carica/química , Minería , Difracción de Rayos X , Azul de Metileno/química , Microscopía Electrónica de Transmisión
5.
Analyst ; 149(15): 3961-3970, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38980709

RESUMEN

Manganese dioxide (MnO2) nanosheets possess unique physical and chemical properties, making them widely applicable in various fields, such as chemistry and biomedicine. Although MnO2 nanosheets are produced using bottom-up wet chemistry synthesis methods, their scale is below the gram level and requires a long processing time, restricting their effective scale-up from laboratory to market. We report a facile, green and scalable synthesis of MnO2 nanosheets by mixing Shiranui mandarin orange juice and KMnO4 for 30 minutes. We produced more than one gram (1.095) of MnO2 nanosheets with a 0.65 nm mean thickness and a 50 nm mean lateral size. Furthermore, we established a visual colorimetric biosensing strategy based on MnO2 nanosheets for the assay of glutathione (GSH) and cardiac troponin I (cTnI), offering high sensitivity and feasibility in clinical samples. For GSH, the limit of detection was 0.08 nM, and for cTnI, it was 0.70 pg mL-1. Meanwhile, the strategy can be used for real-time analysis by applying a smartphone-enabled biosensing strategy, which can provide point-of-care testing in remote areas.


Asunto(s)
Colorimetría , Glutatión , Tecnología Química Verde , Límite de Detección , Compuestos de Manganeso , Nanoestructuras , Óxidos , Troponina I , Óxidos/química , Compuestos de Manganeso/química , Colorimetría/métodos , Glutatión/química , Glutatión/análisis , Troponina I/análisis , Troponina I/sangre , Nanoestructuras/química , Humanos , Tecnología Química Verde/métodos , Técnicas Biosensibles/métodos , Permanganato de Potasio/química , Teléfono Inteligente , Jugos de Frutas y Vegetales/análisis
6.
Sci Rep ; 14(1): 15441, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965246

RESUMEN

A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Pruebas de Sensibilidad Microbiana , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Tecnología Química Verde/métodos , Proliferación Celular/efectos de los fármacos , Candida albicans/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células MCF-7 , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Bacterias/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
7.
Food Res Int ; 191: 114731, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059924

RESUMEN

The recovery of bioactive compounds is a promising approach for obtaining rich extracts from fruit by-products. This study investigated the influence of Natural Deep Eutectic Solvents (NADES) and Ultrasound-Assisted Extraction (UAE) on the phenolic content, antioxidant capacity, and in vitro antidiabetic activity of Psidium myrtoides by-product. Among eight NADES evaluated based on choline chloride, NADES ChCl:Gly (1:2) was selected for its efficiency in extracting total phenolic compounds (TPC) with high antioxidant capacity. The optimized conditions were 61 °C, a solid-liquid ratio of 100 mg 5 mL-1, and a 60-minute extraction time. ChCl:Gly exhibited superior TPC recovery (2.6-fold greater effectiveness) compared to the 60 % hydroethanolic solution. Twenty-six phenolic compounds were identified, including significant levels of catechin (336.48 mg g-1) and isoquercetin (26.09 mg g-1). Phenolic acids, such as p-anisic acid (5.47 mg g-1) and methoxyphenylacetic acid (0.23 mg g-1), were identified for the first time in the purple araçá by-product. The ChCl:Gly extract demonstrated the highest bioactivity, showcasing antioxidant and antidiabetic capacities. This study introduces an innovative and sustainable alternative for recovering phenolic compounds from fruit by-products, offering enhanced recovery efficiency and/or selectivity compared to organic solvents.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Frutas , Fenoles , Extractos Vegetales , Psidium , Fenoles/análisis , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/análisis , Psidium/química , Disolventes Eutécticos Profundos/química , Frutas/química , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/química , Hipoglucemiantes/análisis , Ondas Ultrasónicas , Tecnología Química Verde , Solventes/química
8.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
9.
Sci Rep ; 14(1): 16211, 2024 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003334

RESUMEN

In this research, the magnetic solid acid nanocatalyst based on ferrierite has been prepared and used as catalyst for the green synthesis of some [1,3]-oxazine derivatives in water at room temperature. The synthesized compounds were obtained in high to excellent yields after short reaction times and the structure of synthesized products were investigated by spectroscopic methods such as: FT-IR, 1H NMR and 13C NMR. The prepared magnetic solid acid catalyst was characterized using XRD, FT-IR, FE-SEM, EDX, elemental mapping, TGA and VSM analysis methods. Magnetic catalyst has easy separation ability, which leads to better and easier recycling. The preparation and synthesis of [1,3]-oxazine derivatives were carried out at room temperature in the presence of M-FER/TEPA/SO3H. Easy workup, green solvent (water) and also short reaction times with high to excellent yield of products, are some of advantageous of presented method. Docking calculations on the structure of the synthesized compounds proved their medicinal properties against breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Simulación del Acoplamiento Molecular , Oxazinas , Catálisis , Neoplasias de la Mama/tratamiento farmacológico , Humanos , Oxazinas/química , Oxazinas/síntesis química , Femenino , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier , Tecnología Química Verde/métodos
10.
J Oleo Sci ; 73(8): 1057-1067, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019617

RESUMEN

Recent global scientific attention has been directed towards eco-friendly synthesis and versatile applications of silver nanoparticles (AgNPs) due to their effectiveness against specific cells and tissues. This study aimed to develop a green synthesis method for AgNPs using ethanolic extract from Salvia sclarea aerial parts, and to assess their protective efficacy against streptozotocin (STZ)-induced diabetic nephropathy in rats. Additionally, antioxidant, anti-inflammatory, and apoptosis studies were conducted to understand their mode of action. Characterization via ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR) spectroscopy, and X-ray diffraction (XRD) confirmed the formation of ethanol extract of Salvia sclarea silver nanoparticles (EESS AgNPs), with a distinctive absorption peak at 400 nm. Scanning electron microscopy (SEM) analysis revealed predominantly spherical and quasi-spherical shapes of the synthesized nanoparticles. The treatment procedure spanned for a period of 12 weeks in diabetic rats and were evaluated for inflammatory markers (tumor necrosis factor-α, antioxidant markers (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) and apoptosis markers (Bcl-2, Bax, cleaved-caspase-3). Results demonstrated that treatment with EESS AgNPs significantly reduced blood glucose levels compared to the diabetic group. Additionally, EESS AgNPs treatment led to a significant decrease in levels of pro-inflammatory cytokines TNF-α, IL-1ß, and PKC-ꞵ in renal cells. Furthermore, EESS AgNPs effectively modulated antioxidant enzyme concentrations, including GSH, SOD, GPx, and CAT, bringing them to acceptable levels. Administration of EESS AgNPs also resulted in a significant decrease in protein levels of Bax and activated caspase-3, while increasing expression of the anti-apoptotic protein Bcl-2 in renal cells of STZ-induced diabetic rats. In conclusion, EESS AgNPs demonstrate potent anti-hyperglycemic effects, potentially mitigating diabetic nephropathy by suppressing hyperglycemiainduced oxidative stress, apoptosis, and inflammation in renal cells of diabetic rats.


Asunto(s)
Antiinflamatorios , Antioxidantes , Apoptosis , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Etanol , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Salvia , Plata , Estreptozocina , Animales , Apoptosis/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Antioxidantes/farmacología , Salvia/química , Extractos Vegetales/farmacología , Plata/química , Antiinflamatorios/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas , Ratas Wistar , Estrés Oxidativo/efectos de los fármacos
11.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893285

RESUMEN

In the study, natural deep eutectic solvents (NADESs) were used as alternatives to traditional chemical solvents for the extraction of polyphenols from Elaeagnus angustifolia L. Nine NADESs were tested for the first time and compared with ethanol and water (traditional solvents) regarding the extraction of phenolic compounds from E. angustifolia L. These solvents were particularly effective at extracting polyphenols, whose low water solubility usually requires high amounts of organic solvents. The solvent based on choline chloride and malonic acid provided optimal results and was selected for further optimization. The effects of material-to-liquid ratio, ultrasound time, and ultrasound temperature on the extraction efficiency were studied through single-factor experiments. These parameters were optimized by Box-Behnken design using response surface methodology. The optimal conditions identified were 49.86 g/mL of material-to-liquid ratio, 31.10 min of ultrasound time, and 62.35 °C of ultrasound temperature, resulting in a high yield of 140.30 ± 0.19 mg/g. The results indicated that the NADES extraction technique provided a higher yield than the conventional extraction process. The antioxidant activity of the extract of polyphenols from E. angustifolia L. was determined, and UPLC-IMS-QTOF-MS was used to analyze the phenolic compounds in it. The results revealed that the scavenging ability of 1,1-diphenyl-2-picryl-hydrazil and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) extracted by NADES was higher than that of polyphenols extracted by water and ethanol. Furthermore, a total of 24 phenolic compounds were identified in the extract. To the best of our knowledge, this is the first study in which a green and efficient NADES extraction method has been used to extract bioactive polyphenols from E. angustifolia L., which could provide potential value in pharmaceuticals, cosmetics, and food additives.


Asunto(s)
Antioxidantes , Elaeagnaceae , Extractos Vegetales , Polifenoles , Polifenoles/química , Polifenoles/aislamiento & purificación , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Elaeagnaceae/química , Disolventes Eutécticos Profundos/química , Tecnología Química Verde , Solventes/química
12.
Pharmazie ; 79(3): 42-48, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38872274

RESUMEN

Silver nanoparticles (AgNPs), owing to their unusual characteristics, have been used in various pharmaceutical, cosmetic, and healthcare products. AgNPs, with their exceptional biological potential, exhibit antibacterial, antifungal, antiviral, anti-inflammatory, anticancer, and wound healing properties and have been extensively used in burn therapy. Several studies have established the use of silver nanoparticles in the treatment of burn injuries, resulting in reduced inflammation, quick tissue regeneration, and the remarkable creation of collagen fibers. Conventional physical and chemical techniques have synthesized AgNPs, but they appear to be highly costly and hazardous. Recently, there has been considerable interest in the synthesis of AgNPs using the green chemistry approach because of its tremendous benefits, including being non-toxic, low energy consumption, pollution-free, economical, environmentally friendly, and more sustainable. This review emphasizes the green synthesis of AgNPs using bacteria, fungi, plants, and other microorganisms and the current research related to the application of green synthesized AgNPs in burn therapy, including the biological aspects of AgNPs, their mode of action, and any possible detrimental effects.


Asunto(s)
Quemaduras , Tecnología Química Verde , Nanopartículas del Metal , Plata , Quemaduras/tratamiento farmacológico , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Humanos , Animales , Cicatrización de Heridas/efectos de los fármacos , Antiinfecciosos/farmacología
13.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892030

RESUMEN

This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.


Asunto(s)
Tecnología Química Verde , Humanos , Animales , Tecnología Química Verde/métodos , Nanotecnología/métodos , Composición de Medicamentos/métodos , Nanopartículas/química , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación
14.
Sci Rep ; 14(1): 14157, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898126

RESUMEN

Oxidative stress is considered one of the main challenges for in vitro maturation (IVM) and makes assisted reproductive technology (ART), including IVF and embryonic development less effective. Reducing free radicals via biocompatible nanoparticles (NPs) is one of the most promising approaches for developing IVM. We investigated the comparative effect of green and chemically synthesized iron oxide nanoparticles (IONPs) with an aqueous extract of date palm pollen (DPP) on oocyte parameters related to the IVM process. To this end, IONPs were synthesized by chemical (Ch-IONPs) and green methods (G-IONPs using DPP) and characterized. The mature oocyte quality of the Ch-IONPs and G-IONPs groups was evaluated by JC1 and Hoechst staining, Annexin V-FITC-Propidium Iodide, 2', 7'-dichlorofluorescein diacetate, and dihydroethidium staining compared to the control group. Eventually, the mature oocytes were fertilized, promoted to blastocysts (BL), and evaluated in vitro. Compared with the control and G-IONPs groups, the Ch-IONPs-treated group produced more hydrogen peroxide and oxygen radicals. Compared with the Ch-IONPs group, the fertilization rate in the G-IONPs and control groups increased significantly. Finally, the G-IONPs and control groups exhibited a significant increase in the 2PN, 2-cell, 4-cell, 8-cell, compacted morula (CM), and BL rates compared with the Ch-IONPs group. Green synthesis of IONPs can reduce the toxicity of chemical IONPs during the IVM process. It can be concluded that G-IONPs encased with DPP compounds have the potential to protect against exogenous reactive oxygen species (ROS) production in an IVM medium, which can have a crucial effect on oocyte maturation and fertilization efficiency.


Asunto(s)
Desarrollo Embrionario , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Nanopartículas Magnéticas de Óxido de Hierro , Oocitos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Fertilización In Vitro/métodos , Nanopartículas Magnéticas de Óxido de Hierro/química , Animales , Técnicas de Maduración In Vitro de los Oocitos/métodos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Tecnología Química Verde/métodos , Estrés Oxidativo/efectos de los fármacos , Ratones , Compuestos Férricos
15.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902620

RESUMEN

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Asunto(s)
Antiinfecciosos , Antiinflamatorios , Nigella sativa , Extractos Vegetales , Semillas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nigella sativa/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Compuestos Férricos/química , Tecnología Química Verde
16.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893556

RESUMEN

The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.


Asunto(s)
Industria de Alimentos , Tecnología Química Verde , Tecnología Química Verde/métodos , Residuos Industriales , Polifenoles/aislamiento & purificación , Polifenoles/química , Humanos , Residuos/análisis , Solventes/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-38881214

RESUMEN

Plant-mediated biosynthesis of nanoparticles is a green method that allows synthesis in one-pot process. Synthesis of gold nanoparticles with plant extracts has gained interest in the field of biomedicine due to its variety of applications. This study presents the synthesis via green chemistry of gold nanoparticles (AuNPs) using the methanol extract of Moringa oleifera seeds. The AuNPs were synthesized at room temperature. UV-Vis spectroscopy confirmed the formation of AuNPs by identifying the surface plasmon resonance located at 546 nm. TEM analysis shows spherical nanoparticles. FTIR analysis demonstrated the presence of specific bioactive molecules responsible for the Au3+ ion reduction process. The antioxidant activity of the nanoparticles was evaluated on the stabilization of the DPPH radical (1,1-diphenyl-2-picrylhydrazyl, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl). The antimicrobial activity analysis was developed by broth microdilution method at different concentrations against Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration were 400 µg/mL and 200 µg/mL, respectively. A549 lung cancer cell proliferation was measured according to the MTT protocol, indicating a dose-dependent response and a IC50 of 163.9 ± 13.27 µg/mL. The AuNPs synthesized using M. oleifera seeds showed promise as active materials for antimicrobial or anticancer products.


Asunto(s)
Antibacterianos , Antioxidantes , Oro , Tecnología Química Verde , Neoplasias Pulmonares , Nanopartículas del Metal , Moringa oleifera , Extractos Vegetales , Semillas , Staphylococcus aureus , Moringa oleifera/química , Nanopartículas del Metal/química , Oro/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas/química , Antioxidantes/farmacología , Antioxidantes/química , Tecnología Química Verde/métodos , Humanos , Staphylococcus aureus/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacos , Células A549
18.
Sci Rep ; 14(1): 13470, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866790

RESUMEN

The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 µg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Rhus , Neoplasias de la Mama Triple Negativas , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Rhus/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
19.
J Agric Food Chem ; 72(23): 12871-12895, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38829927

RESUMEN

Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.


Asunto(s)
Tecnología Química Verde , Residuos Industriales , Olea , Extractos Vegetales , Polifenoles , Polifenoles/química , Extractos Vegetales/química , Residuos Industriales/análisis , Residuos Industriales/economía , Olea/química , Granada (Fruta)/química , Humanos , Antioxidantes/química , Animales
20.
Sci Rep ; 14(1): 13459, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862646

RESUMEN

Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Nanopartículas del Metal/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Tecnología Química Verde/métodos , Línea Celular Tumoral , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA