Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Sci Rep ; 14(1): 15441, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965246

RESUMEN

A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Pruebas de Sensibilidad Microbiana , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Tecnología Química Verde/métodos , Proliferación Celular/efectos de los fármacos , Candida albicans/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células MCF-7 , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Bacterias/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos
2.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
3.
J Oleo Sci ; 73(7): 963-976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945925

RESUMEN

The objective of this research was to evaluate the efficiency of aqueous enzymatic extraction (AEE) to obtain oil from hemp seeds (Cannabis sativa L.) grown in northern Morocco. Optimisation of AEE extraction parameters, including pH, enzyme concentration (hemicellulase, protease and pectinase), temperature and incubation time, to maximize oil yield was achieved using response surface methodology with a central composite design. For comparison, the solvent extraction (Soxhlet) (SE) method was also used. Optimized hydrolysis conditions involved incubation for 4 hours at 60°C with a pH of 6.5, using a multi-enzyme preparation comprising protease, hemicellulase and pectinase at concentrations of 55, 202.5 and 234 U/mg, respectively. Referring to the conventional Soxhlet extraction (SE), Aqueous Enzymatic Extraction (AEE) achieved a 30.65% oil recovery rate under the optimized parameters mentioned above. The use of enzymes produced an oil that was more stable against oxidation than the solvent-extracted oil, with a peroxide value (PV) of 19.54 and 47.87 meq O 2 /kg, respectively. Furthermore, HPLC-DAD analysis of tocopherol content indicated a higher total tocopherol content (547.2 mg/kg) in Aqueous Enzymatic Extraction (AEE) compared to Soxhlet Extraction (SE) (513.51 mg/kg), with γ-tocopherol being the predominant form. No significant differences in fatty acid composition were observed between the two extraction methods with linoleic acid and alpha-linolenic acid being the predominant constituents.


Asunto(s)
Cannabis , Glicósido Hidrolasas , Péptido Hidrolasas , Aceites de Plantas , Poligalacturonasa , Semillas , Cannabis/química , Poligalacturonasa/metabolismo , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Semillas/química , Péptido Hidrolasas/metabolismo , Hidrólisis , Extracción Líquido-Líquido/métodos , Calidad de los Alimentos , Agua , Tocoferoles/análisis , Tocoferoles/aislamiento & purificación , Concentración de Iones de Hidrógeno , Temperatura , Solventes/química , Tecnología Química Verde/métodos
4.
Sci Rep ; 14(1): 13032, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844676

RESUMEN

Green products such as plant tints are becoming more and more well-known worldwide due to their superior biological and ayurvedic properties. In this work, colorant from Amba Haldi (Curcuma aromatica) was isolated using microwave (MW), and bio-mordants were added to produce colorfast shades. Response surface methodology was used to develop a central composite design (CCD), which maximizes coloring variables statistically. The findings from 32 series of experiments show that excellent color depth (K/S = 12.595) was established onto MW-treated silk fabric (RS = 4 min) by employing 65 mL of radiated aqueous extract (RE = 4 min) of 5 pH cutting-edge the existence of 1.5 g/100 mL used sodium chloride at 75 °C for 45 min. It was discovered that acacia (keekar) extract (1%), pomegranate extract (2%), and pistachio extract (1.5%) were present before coloring by the use of bio-mordants. On the other hand, upon dyeing, acacia extract (1.5%), pomegranate extract (1.5%), and pistachio extract (2%) have all shown extremely strong colorfast colors. Comparatively, before dyeing, salts of Al3+ (1.5%), Fe2+ (2%), and TA (1.5%) gave good results; after dyeing, salts of Al3+ (1%) and Fe2+ (1.5%) and TA (2%) gave good results. When applied to silk fabric, MW radiation has increased the production of dyes recovered from rhizomes. Additionally, the right amount of chemical and biological mordants have been added, resulting in color fastness ratings ranging from outstanding to good. Therefore, the natural color extracted from Amba Haldi can be a sustainable option for the dyeing of silk fabric in the textile dyeing and finishing industries.


Asunto(s)
Colorantes , Curcuma , Extractos Vegetales , Rizoma , Seda , Curcuma/química , Rizoma/química , Colorantes/química , Extractos Vegetales/química , Seda/química , Microondas , Color , Tecnología Química Verde/métodos
5.
Sci Rep ; 14(1): 14157, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898126

RESUMEN

Oxidative stress is considered one of the main challenges for in vitro maturation (IVM) and makes assisted reproductive technology (ART), including IVF and embryonic development less effective. Reducing free radicals via biocompatible nanoparticles (NPs) is one of the most promising approaches for developing IVM. We investigated the comparative effect of green and chemically synthesized iron oxide nanoparticles (IONPs) with an aqueous extract of date palm pollen (DPP) on oocyte parameters related to the IVM process. To this end, IONPs were synthesized by chemical (Ch-IONPs) and green methods (G-IONPs using DPP) and characterized. The mature oocyte quality of the Ch-IONPs and G-IONPs groups was evaluated by JC1 and Hoechst staining, Annexin V-FITC-Propidium Iodide, 2', 7'-dichlorofluorescein diacetate, and dihydroethidium staining compared to the control group. Eventually, the mature oocytes were fertilized, promoted to blastocysts (BL), and evaluated in vitro. Compared with the control and G-IONPs groups, the Ch-IONPs-treated group produced more hydrogen peroxide and oxygen radicals. Compared with the Ch-IONPs group, the fertilization rate in the G-IONPs and control groups increased significantly. Finally, the G-IONPs and control groups exhibited a significant increase in the 2PN, 2-cell, 4-cell, 8-cell, compacted morula (CM), and BL rates compared with the Ch-IONPs group. Green synthesis of IONPs can reduce the toxicity of chemical IONPs during the IVM process. It can be concluded that G-IONPs encased with DPP compounds have the potential to protect against exogenous reactive oxygen species (ROS) production in an IVM medium, which can have a crucial effect on oocyte maturation and fertilization efficiency.


Asunto(s)
Desarrollo Embrionario , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Nanopartículas Magnéticas de Óxido de Hierro , Oocitos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Fertilización In Vitro/métodos , Nanopartículas Magnéticas de Óxido de Hierro/química , Animales , Técnicas de Maduración In Vitro de los Oocitos/métodos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Tecnología Química Verde/métodos , Estrés Oxidativo/efectos de los fármacos , Ratones , Compuestos Férricos
6.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892030

RESUMEN

This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.


Asunto(s)
Tecnología Química Verde , Humanos , Animales , Tecnología Química Verde/métodos , Nanotecnología/métodos , Composición de Medicamentos/métodos , Nanopartículas/química , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación
7.
Pharmazie ; 79(3): 42-48, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38872274

RESUMEN

Silver nanoparticles (AgNPs), owing to their unusual characteristics, have been used in various pharmaceutical, cosmetic, and healthcare products. AgNPs, with their exceptional biological potential, exhibit antibacterial, antifungal, antiviral, anti-inflammatory, anticancer, and wound healing properties and have been extensively used in burn therapy. Several studies have established the use of silver nanoparticles in the treatment of burn injuries, resulting in reduced inflammation, quick tissue regeneration, and the remarkable creation of collagen fibers. Conventional physical and chemical techniques have synthesized AgNPs, but they appear to be highly costly and hazardous. Recently, there has been considerable interest in the synthesis of AgNPs using the green chemistry approach because of its tremendous benefits, including being non-toxic, low energy consumption, pollution-free, economical, environmentally friendly, and more sustainable. This review emphasizes the green synthesis of AgNPs using bacteria, fungi, plants, and other microorganisms and the current research related to the application of green synthesized AgNPs in burn therapy, including the biological aspects of AgNPs, their mode of action, and any possible detrimental effects.


Asunto(s)
Quemaduras , Tecnología Química Verde , Nanopartículas del Metal , Plata , Quemaduras/tratamiento farmacológico , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Humanos , Animales , Cicatrización de Heridas/efectos de los fármacos , Antiinfecciosos/farmacología
8.
Sci Rep ; 14(1): 13459, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862646

RESUMEN

Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Nanopartículas del Metal/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Tecnología Química Verde/métodos , Línea Celular Tumoral , Espectroscopía Infrarroja por Transformada de Fourier
9.
Sci Rep ; 14(1): 13470, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866790

RESUMEN

The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 µg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Rhus , Neoplasias de la Mama Triple Negativas , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Rhus/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
10.
Ultrason Sonochem ; 107: 106932, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824698

RESUMEN

Artemisia argyi leaf polysaccharide (AALPs) were prepared through ultrasound-assisted extraction (UAE), and their antifatigue activities were evaluated. Extraction was optimized using response surface methodology (RSM), which yielded the following optimal UAE conditions: ultrasonication power of 300 W, extraction temperature of 51 °C, liquid:solid ratio of 20 mL/g, and ultrasonication time of 47 mins. The above optimal conditions resulted in the maximum extraction rate of 10.49 %. Compared with hot water extraction (HWE), UAE supported higher yields and total sugar, uronic acid, and sulfate contents of AALPs. Meanwhile, AALP prepared through UAE (AALP-U) exhibited higher stability due to its smaller particle size and higher absolute value of zeta potential than AALP prepared through HWE (AALP-H). In addition, AALP-U demonstrated stronger antioxidant activity than AALP-H. In forced swimming tests on mice, AALP-U could significantly prolong swimming time with a dose-dependent effect, increase liver and muscle glycogen levels, and improve other biochemical indices, thus showing great potential for application in functional food.


Asunto(s)
Artemisia , Hojas de la Planta , Polisacáridos , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Polisacáridos/química , Artemisia/química , Hojas de la Planta/química , Animales , Ratones , Ondas Ultrasónicas , Fraccionamiento Químico/métodos , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Tecnología Química Verde/métodos , Masculino , Glucógeno/metabolismo , Natación , Hígado/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38881214

RESUMEN

Plant-mediated biosynthesis of nanoparticles is a green method that allows synthesis in one-pot process. Synthesis of gold nanoparticles with plant extracts has gained interest in the field of biomedicine due to its variety of applications. This study presents the synthesis via green chemistry of gold nanoparticles (AuNPs) using the methanol extract of Moringa oleifera seeds. The AuNPs were synthesized at room temperature. UV-Vis spectroscopy confirmed the formation of AuNPs by identifying the surface plasmon resonance located at 546 nm. TEM analysis shows spherical nanoparticles. FTIR analysis demonstrated the presence of specific bioactive molecules responsible for the Au3+ ion reduction process. The antioxidant activity of the nanoparticles was evaluated on the stabilization of the DPPH radical (1,1-diphenyl-2-picrylhydrazyl, 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl). The antimicrobial activity analysis was developed by broth microdilution method at different concentrations against Escherichia coli and Staphylococcus aureus. Minimum inhibitory concentration were 400 µg/mL and 200 µg/mL, respectively. A549 lung cancer cell proliferation was measured according to the MTT protocol, indicating a dose-dependent response and a IC50 of 163.9 ± 13.27 µg/mL. The AuNPs synthesized using M. oleifera seeds showed promise as active materials for antimicrobial or anticancer products.


Asunto(s)
Antibacterianos , Antioxidantes , Oro , Tecnología Química Verde , Neoplasias Pulmonares , Nanopartículas del Metal , Moringa oleifera , Extractos Vegetales , Semillas , Staphylococcus aureus , Moringa oleifera/química , Nanopartículas del Metal/química , Oro/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas/química , Antioxidantes/farmacología , Antioxidantes/química , Tecnología Química Verde/métodos , Humanos , Staphylococcus aureus/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacos , Células A549
12.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893556

RESUMEN

The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time.


Asunto(s)
Industria de Alimentos , Tecnología Química Verde , Tecnología Química Verde/métodos , Residuos Industriales , Polifenoles/aislamiento & purificación , Polifenoles/química , Humanos , Residuos/análisis , Solventes/química
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124428, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781825

RESUMEN

The combination of Curcumin (CRN), resveratrol (RSV), and quercetin (QRN) has significant antioxidant effects and is found to be more effective than a single polyphenol. Spectrophotometric methods are considered one of the most common analytical techniques for the determination of the drugs due to their sensitivity, rapidness, low cost, and reproducibility. Therefore, the presence of new, and simple methods for the determination of such compounds will be highly valuable, specially in the presence of spectral overlap. In this research, five different facile spectrophotometric methods were investigated for the simultaneous determination of that ternary mixture for the first time, including zero order (I), first derivative (II), ratio difference double divisor (III), first derivative ratio spectra (IV), and mean centering (V) methods. The designed approaches were linear over the concentration ranges of (1.0-10.0), (0.5-8.0), and (1.0-14.0) µg/mL, respectively for curcumin, resveratrol, and quercetin. The different methods were then validated as stated by the International Council of Harmonization. The accuracy and precision have been evaluated by statistical analysis including student t-test, variance ratio F-test, and ANOVA. Moreover, the greenness and whiteness of the proposed methods were assessed to ensure the adherence to the greenness characters.


Asunto(s)
Antioxidantes , Curcumina , Polifenoles , Quercetina , Resveratrol , Espectrofotometría , Antioxidantes/análisis , Espectrofotometría/métodos , Polifenoles/análisis , Resveratrol/análisis , Quercetina/análisis , Curcumina/análisis , Tecnología Química Verde/métodos , Reproducibilidad de los Resultados , Estilbenos/análisis , Estilbenos/química
14.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2828-2840, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812182

RESUMEN

The food security of China as a big agricultural country is attracting increasing attention. With the progress in the traditional Chinese medicine industry, Chinese medicinal materials and their preparations have been gradually developed as agents for disease prevention and with antimicrobial and insecticidal functions in agriculture. Promoting pesticide innovation by interdisciplinary integration has become the trend in pesticide research globally. Considering the increasingly important roles of green pesticides from traditional Chinese medicines and artificial intelligence in pest target prediction, this paper proposed an innovative green control strategy in line with the concepts of ecological sustainable development and food security protection. CiteSpace was used for visual analysis of the publications. The results showed that artificial intelligence had been extensively applied in the pesticide field in recent years. This paper explores the application and development of biopesticides for the first time, with focus on the plant-derived pesticides. The thought of traditional Chinese medicine compatibility can be employed to creat a new promosing field: pesticides from traditional Chinese medicine. Moreover, artificial intelligence can be employed to build the formulation system of pesticides from traditional Chinese medicines and the target prediction system of diseases and pests. This study provides new ideas for the future development and market application of biopesticides, aiming to provide more healthy and safe agricultural products for human beings, promote the innovation and development of green pesticides in China, and protect the sustainable development of the environment and ecosystem. This may be the research hotspot and competition point for the green development of the pesticide industry chain in the future.


Asunto(s)
Inteligencia Artificial , Medicamentos Herbarios Chinos , Medicina Tradicional China , Plaguicidas , Plaguicidas/química , Medicamentos Herbarios Chinos/química , Animales , Tecnología Química Verde/métodos , Humanos
15.
Food Res Int ; 183: 114240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760119

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.


Asunto(s)
Contaminación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos , Alimentos Marinos , Espectrometría de Masas en Tándem , Hidrocarburos Policíclicos Aromáticos/análisis , Alimentos Marinos/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Extracción en Fase Sólida/métodos , Reproducibilidad de los Resultados , Brasil , Tecnología Química Verde/métodos
16.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731426

RESUMEN

The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.


Asunto(s)
Antioxidantes , Aceite de Oliva , Extractos Vegetales , Polifenoles , Aceite de Oliva/química , Polifenoles/aislamiento & purificación , Polifenoles/química , Polifenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Tecnología Química Verde/métodos , Olea/química , Cromatografía Líquida de Alta Presión/métodos , Solventes/química
17.
Sci Rep ; 14(1): 10270, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704438

RESUMEN

Biosurfactants, as microbial bioproducts, have significant potential in the field of microbial enhanced oil recovery (MEOR). Biosurfactants are microbial bioproducts with the potential to reduce the interfacial tension (IFT) between crude oil and water, thus enhancing oil recovery. This study aims to investigate the production and characterization of biosurfactants and evaluate their effectiveness in increasing oil recovery. Pseudoxanthomonas taiwanensis was cultured on SMSS medium to produce biosurfactants. Crude oil was found to be the most effective carbon source for biosurfactant production. The biosurfactants exhibited comparable activity to sodium dodecyl sulfate (SDS) at a concentration of 400 ppm in reducing IFT. It was characterized as glycolipids, showing stability in emulsions at high temperatures (up to 120 °C), pH levels ranging from 3 to 9, and NaCl concentrations up to 10% (w/v). Response surface methodology revealed the optimized conditions for the most stable biosurfactants (pH 7, temperature of 40 °C, and salinity of 2%), resulting in an EI24 value of 64.45%. Experimental evaluations included sand pack column and core flooding studies, which demonstrated additional oil recovery of 36.04% and 12.92%, respectively. These results indicate the potential application of P. taiwanensis biosurfactants as sustainable and environmentally friendly approaches to enhance oil recovery in MEOR processes.


Asunto(s)
Petróleo , Tensoactivos , Tensoactivos/metabolismo , Tensoactivos/química , Petróleo/metabolismo , Xanthomonadaceae/metabolismo , Concentración de Iones de Hidrógeno , Tensión Superficial , Temperatura , Tecnología Química Verde/métodos , Dodecil Sulfato de Sodio/química , Emulsiones
18.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714767

RESUMEN

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Asunto(s)
Nanopartículas del Metal , Compuestos de Plata , Nanopartículas del Metal/química , Animales , Humanos , Compuestos de Plata/química , Compuestos de Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Artemia/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tecnología Química Verde/métodos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Células Vero , Antifúngicos/farmacología , Antifúngicos/química , Plata/química , Plata/farmacología , Óxidos
19.
Pak J Biol Sci ; 27(4): 210-218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38812112

RESUMEN

<b>Background and Objective:</b> The remarkable surface-to-volume ratio and efficient particle interaction capabilities of nanoparticles have garnered significant attention among researchers. Microalgal synthesis presents a sustainable and cost-effective approach to nanoparticle production, particularly noteworthy for its high metal uptake and ion reduction capabilities. This study focuses on the eco-friendly and straightforward synthesis of Silver (AgNPs) and Iron (FeNPs) nanoparticles by utilizing Spirulina (<i>Arthrospira platensis</i>) and <i>Chlorella pyrenoidosa</i> extract, devoid of any chemical reducing or capping agents. <b>Materials and Methods:</b> Following the mixing of 1 mM AgNO<sub>3</sub> and 1 mM iron oxide solution with the algal extract, the resulting filtrated solution underwent comprehensive characterization, including UV-visible absorption spectra analysis, observation of particle morphology, Zetasizer measurements and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) analysis. <b>Results:</b> The UV-visible spectroscopy revealed a maximum absorbance peak at 430-440 nm, confirming the successful green synthesis of AgNPs and FeNPs, as indicated by the distinct color change from transparent to dark reddish-yellow and brown to reddish-brown, respectively. The SEM-EDX analysis further elucidated the spherical morphology of the nanoparticles, with an average diameter of 93.71 nm for AgNPs and 6198 nm for FeNPs. The Zeta potential measurements indicated average values of -56.68 mV for AgNPs and 29.73 mV for FeNPs, with conductivities of 0.1764 and 0.6786 mS/cm, respectively. <b>Conclusion:</b> The observed bioaccumulation of silver and iron nanoparticles within the algal extract underscores its potential as an environmentally friendly and cost-effective method for nanoparticle synthesis. These findings suggested a promising avenues for the application of silver and iron nanoparticles in the field of nanobiotechnology. Future research endeavors could focus on optimizing preparation conditions and controlling nanoparticle size to further enhance their utility and effectiveness.


Asunto(s)
Hierro , Nanopartículas del Metal , Microalgas , Plata , Spirulina , Plata/química , Microalgas/metabolismo , Nanopartículas del Metal/química , Hierro/química , Spirulina/metabolismo , Spirulina/química , Tecnología Química Verde/métodos , Chlorella/metabolismo , Nanotecnología/métodos
20.
Sci Rep ; 14(1): 11535, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773159

RESUMEN

In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.


Asunto(s)
Rayos gamma , Grafito , Hesperidina , Metaloproteinasa 2 de la Matriz , Nanocompuestos , Proteína Smad4 , Humanos , Grafito/química , Grafito/farmacología , Nanocompuestos/química , Hesperidina/farmacología , Hesperidina/química , Proteína Smad4/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Tecnología Química Verde/métodos , Transducción de Señal/efectos de los fármacos , Células CACO-2 , Células Hep G2 , Línea Celular Tumoral , MAP Quinasa Quinasa 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA