Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 611(7936): 585-593, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352225

RESUMEN

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Asunto(s)
Sistema Nervioso Central , Líquido Cefalorraquídeo , Macrófagos , Tejido Parenquimatoso , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Líquido Cefalorraquídeo/metabolismo , Macrófagos/fisiología , Meninges/citología , Reología , Proteínas de la Matriz Extracelular/metabolismo , Envejecimiento/metabolismo , Fagocitosis , Endocitosis , Interferón gamma/metabolismo , Tejido Parenquimatoso/citología , Humanos
2.
Stem Cell Res Ther ; 11(1): 448, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097094

RESUMEN

Gene therapy is being investigated for a range of serious lung diseases, such as cystic fibrosis and emphysema. Recombinant adeno-associated virus (rAAV) is a well-established, safe, viral vector for gene delivery with multiple naturally occurring and artificial serotypes available displaying alternate cell, tissue, and species-specific tropisms. Efficient AAV serotypes for the transduction of the conducting airways have been identified for several species; however, efficient serotypes for human lung parenchyma have not yet been identified. Here, we screened the ability of multiple AAV serotypes to transduce lung bud organoids (LBOs)-a model of human lung parenchyma generated from human embryonic stem cells. Microinjection of LBOs allowed us to model transduction from the luminal surface, similar to dosing via vector inhalation. We identified the naturally occurring rAAV2 and rAAV6 serotypes, along with synthetic rAAV6 variants, as having tropism for the human lung parenchyma. Positive staining of LBOs for surfactant proteins B and C confirmed distal lung identity and suggested the suitability of these vectors for the transduction of alveolar type II cells. Our findings establish LBOs as a new model for pulmonary gene therapy and stress the relevance of LBOs as a viral infection model of the lung parenchyma as relevant in SARS-CoV-2 research.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Células Madre Embrionarias Humanas/citología , Enfermedades Pulmonares/terapia , Organoides/citología , Línea Celular , Dependovirus/inmunología , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos , Pulmón/metabolismo , Modelos Biológicos , Tejido Parenquimatoso/citología
3.
J Gastroenterol Hepatol ; 35(6): 960-966, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31782974

RESUMEN

Performance and advances in liver surgery makes remarkable progress of the understanding of liver regeneration. Liver regeneration after liver resection has been widely researched, and the underlying mechanism mostly concerns proliferation of hepatocytes and the influence by inflammation through activation of Kupffer cells and the other parenchymal cells, the second regenerative pathway by hepatic progenitor cells (HPCs), inducing angiogenesis, remodeling of a extracellular matrix (ECM), and termination mechanisms. New clinical surgeries and the updated multiomics analysis are exploiting the remarkable progress, especially in immune regulation and metabolic process of two emerging hallmarks. This review briefly represents a systemic outline of eight hallmarks, including hepatocyte proliferation, contribution of hepatic progenitor cells, inducing angiogenesis, reprogramming of the extracellular matrix, apoptosis and termination of proliferation, inflammation, immune and metabolic regulation, which are set as organizing characteristics of postoperative liver regeneration and future directions of refining treatment targets.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Digestivo , Regeneración Hepática/fisiología , Hígado/cirugía , Proliferación Celular , Matriz Extracelular/metabolismo , Hepatocitos/fisiología , Humanos , Macrófagos del Hígado/fisiología , Hígado/citología , Hígado/metabolismo , Hígado/fisiopatología , Neovascularización Fisiológica , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/fisiología , Periodo Posoperatorio , Células Madre/fisiología
4.
Nat Rev Cancer ; 19(11): 605, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548603
6.
Nat Mater ; 18(6): 627-637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31114073

RESUMEN

Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor. In contrast to the modest parenchyma formed by native adult progenitors, Alx3-restored cells in decellularized scaffolds not only produced vascularized stroma that involved vascular endothelial growth factor signalling, but also parenchymal dentin via the Wnt/ß-catenin pathway. In an orthotopic large-animal model following parenchyma and stroma ablation, Wnt3a-recruited endogenous cells regenerated neurovascular stroma and differentiated into parenchymal odontoblast-like cells that extended the processes into newly formed dentin with a structure-mechanical equivalency to native dentin. Thus, the Alx3-Wnt3a axis enables postnatal progenitors with a modest innate regenerative capacity to regenerate adult tissues. Depleted signals in the decellularized matrix may be reinstated by a developmentally pivotal gene or corresponding protein.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Tejido Parenquimatoso/fisiología , Diente/citología , Diente/embriología , Adolescente , Animales , Femenino , Proteínas de Homeodominio/genética , Humanos , Incisivo/citología , Incisivo/embriología , Ratones Endogámicos , Tercer Molar/citología , Técnicas de Cultivo de Órganos , Tejido Parenquimatoso/citología , Embarazo , Regiones Promotoras Genéticas , Regeneración , Células del Estroma/fisiología , Porcinos , Factor A de Crecimiento Endotelial Vascular/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
8.
Front Immunol ; 9: 44, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29422896

RESUMEN

Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a "graveyard" for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.


Asunto(s)
Células Epiteliales/metabolismo , Macrófagos del Hígado/inmunología , Hígado/metabolismo , Tejido Parenquimatoso/metabolismo , Fagocitosis/inmunología , Apoptosis/inmunología , Epitelio/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/citología , Necrosis/inmunología , Tejido Parenquimatoso/citología
9.
Cell Physiol Biochem ; 44(4): 1295-1310, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29183009

RESUMEN

BACKGROUND/AIMS: Radiation therapy is an important treatment for thoracic cancer; however, side effects accompanied with radiotherapy lead to limited tumor control and a decline in patient quality of life. Among these side effects, radiation-induced lung injury (RILI) is the most serious and common. Hence, an effective remedy for RILI is needed. Mesenchymal stromal cells (MSCs) are multipotent adult stem cells that have been demonstrated to be an effective treatment in some disease caused by tissue damage. However, unlike other injuries, RILI received limited therapeutic effects from implanted MSCs due to local hypoxia and extensive reactive oxygen species (ROS) in irradiated lungs. Since the poor survival of MSCs is primarily due to hypoxia and ROS generation, we hypothesize that persistent and adaptive hypoxia treatment induces enhanced resistance to hypoxic stress in implanted MSC. The aim of this study is to investigate whether persistent and adaptive hypoxia treatment of bmMSCs prior to their transplantation in injured mice enhanced survival and improved curative effects in RILI. METHODS: Primary bmMSCs were obtained from the marrow of six-week-old male C57BL6/J mice and were cultured either under normoxic conditions (21% O2) or hypoxic conditions (2.5% O2). Mice were injected with normoxia/hypoxia MSCs after thoracic irradiation (20 Gy). The therapeutic effects of MSCs on RILI were assessed by pathological examinations that included H&E staining, Masson staining and α-SMA staining; meanwhile, inflammatory factors were measured using an ELISA. The morphology of MSCs in vitro was recorded using a microscope and identified by flow cytometry, cell viability was measured using the CCK-8 assay, the potential for proliferation was detected by the EdU assay, and ROS levels were measured using a ROS fluorogenic probe. In addition, HIF-1α and several survival pathway proteins (Akt, p-Akt, Caspase-3) were also detected by western blotting. RESULTS: Implanted MSCs alleviated both early radiation-induced pneumonia and late pulmonary fibrosis. However, hypoxia MSCs displayed a more pronounced therapeutic effect compared to normoxia MSCs. Compared to normoxia MSCs, the hypoxia MSCs demonstrated greater cell viability, an enhanced proliferation potential, decreased ROS levels and increased resistance to hypoxia and ROS stress. In addition, hypoxia MSCs achieved higher activation levels of HIF-1α and Akt, and HIF-1α played a critical role in the development of resistance. CONCLUSION: Hypoxia enhances the therapeutic effect of mesenchymal stromal cells on radiation-induced lung injury by promoting MSC proliferation and improving their antioxidant ability, mediated by HIF-1α.


Asunto(s)
Antioxidantes/metabolismo , Hipoxia de la Célula , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas , Actinas/genética , Actinas/metabolismo , Animales , Apoptosis/efectos de la radiación , Células de la Médula Ósea/citología , Caspasa 3/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Rayos gamma , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lesión Pulmonar/patología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/metabolismo , Tejido Parenquimatoso/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta/análisis , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/metabolismo
10.
Nat Commun ; 8: 14809, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28401883

RESUMEN

T-cell responses are initiated upon cognate presentation by professional antigen presenting cells in lymphoid tissue. T cells then migrate to inflamed tissues, but further T-cell stimulation in these parenchymal target sites is not well understood. Here we show that T-cell expansion within inflamed tissues is a distinct phase that is neither a classical primary nor classical secondary response. This response, which we term 'the mezzanine response', commences within days after initial antigen encounter, unlike the secondary response that usually occurs weeks after priming. A further distinction of this response is that T-cell proliferation is driven by parenchymal cell antigen presentation, without requiring professional antigen presenting cells, but with increased dependence on IL-2. The mezzanine response might, therefore, be a new target for inhibiting T-cell responses in allograft rejection and autoimmunity or for enhancing T-cell responses in the context of microbial or tumour immunity.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/citología , Proliferación Celular , Ovalbúmina/inmunología , Tejido Parenquimatoso/citología , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Inflamación/inmunología , Interleucina-2/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/inmunología , Ganglios Linfáticos/inmunología , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Tejido Parenquimatoso/inmunología
11.
Hum Reprod ; 32(6): 1170-1182, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369509

RESUMEN

STUDY QUESTION: Can all types of testicular germ cells be accurately identified by microscopy techniques and unambiguously distributed in stages of the human seminiferous epithelium cycle (SEC)? SUMMARY ANSWER: By using a high-resolution light microscopy (HRLM) method, which enables an improved visualization of germ cell morphological features, we identified all testicular germ cells in the seminiferous epithelium and precisely grouped them in six well-delimitated SEC stages, thus providing a reliable reference source for staging in man. WHAT IS ALREADY KNOWN: Morphological characterization of germ cells in human has been done decades ago with the use of conventional histological methods (formaldehyde-based fixative -Zenker-formal- and paraffin embedding). These early studies proposed a classification of the SEC in six stages. However, the use of stages as baseline for morphofunctional evaluations of testicular parenchyma has been difficult because of incomplete morphological identification of germ cells and their random distribution in the human SEC. STUDY DESIGN, SIZE, DURATION: Testicular tissue from adult and elderly donors with normal spermatogenesis according to Levin's, Johnsen's and Bergmann's scores were used to evaluate germ cell morphology and validate their distribution and frequency in stages throughout human spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testicular tissue from patients diagnosed with congenital bilateral agenesis of vas deferens (n = 3 adults) or prostate cancer (n = 3 elderly) were fixed in glutaraldehyde and embedded in araldite epoxy resin. Morphological analyses were performed by both light and transmission electron microscopy. MAIN RESULTS AND THE ROLE OF CHANCE: HRLM method enabled a reliable morphological identification of all germ cells (spermatogonia, spermatocytes and spermatids) based on high-resolution aspects of euchromatin, heterochromatin and nucleolus. Moreover, acrosomal development of spermatids was clearly revealed. Altogether, our data redefined the limits of each stage leading to a more reliable determination of the SEC in man. LIMITATIONS, REASONS FOR CAUTION: Occasionally, germ cells can be absent in some tubular sections. In this situation, it has to be taken into account the germ cell association proposed in the present study to classify the stages. WIDER IMPLICATIONS OF THE FINDINGS: Our findings bring a new focus on the morphology and development of germ cells during the SEC in human. Application of HRLM may be a valuable tool for research studies and clinical andrology helping to understand some testicular diseases and infertility conditions which remain unsolved. STUDY FUNDING/COMPETING INTEREST: Experiments were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors declare that there are no conflicts of interest. TRIAL REGISTRATION NUMBER: Not applicable.


Asunto(s)
Envejecimiento , Modelos Biológicos , Epitelio Seminífero/ultraestructura , Espermatogénesis , Espermatozoides/ultraestructura , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Disgenesia Gonadal/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía , Microscopía Electrónica de Transmisión , Orquiectomía , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/crecimiento & desarrollo , Tejido Parenquimatoso/patología , Tejido Parenquimatoso/ultraestructura , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Epitelio Seminífero/citología , Epitelio Seminífero/crecimiento & desarrollo , Epitelio Seminífero/patología , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo , Espermatozoides/patología , Testículo/anomalías , Conducto Deferente/anomalías
12.
Glia ; 65(3): 460-473, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28063173

RESUMEN

The glial stress protein alpha B-crystallin (HSPB5) is an endogenous agonist for Toll-like receptor 2 in CD14+ cells. Following systemic administration, HSPB5 acts as a potent inhibitor of neuroinflammation in animal models and reduces lesion development in multiple sclerosis patients. Here, we show that systemically administered HSPB5 rapidly crosses the blood-brain barrier, implicating microglia as additional targets for HSPB5 along with peripheral monocytes and macrophages. To compare key players in the HSPB5-induced protective response of human macrophages and microglia, we applied weighted gene co-expression network analysis on transcript expression data obtained 1 and 4 h after activation. This approach identified networks of genes that are co-expressed in all datasets, thus reducing the complexity of the nonsynchronous waves of transcripts that appear after activation by HSPB5. In both cell types, HSPB5 activates a network of highly connected genes that appear to be functionally equivalent and consistent with the therapeutic effects of HSPB5 in vivo, since both networks include factors that suppress apoptosis, the production of proinflammatory factors, and the development of adaptive immunity. Yet, hub genes at the core of the network in either cell type were strikingly different. They prominently feature the well-known tolerance-promoting programmed-death ligand 1 as a key player in the macrophage response to HSPB5, and the immune-regulatory enzyme cyclooxygenase-2 (COX-2) in that of microglia. This latter finding indicates that despite its reputation as a potential target for nonsteroidal anti-inflammatory drugs, microglial COX-2 plays a central role in the therapeutic effects of HSPB5 during neuroinflammation. GLIA 2017;65:460-473.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Cadena B de alfa-Cristalina/farmacología , Animales , Encéfalo/citología , Células Cultivadas , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/efectos de los fármacos , ARN Mensajero/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Cadena B de alfa-Cristalina/metabolismo
13.
Exp Lung Res ; 42(8-10): 440-452, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27982694

RESUMEN

PURPOSE: Chronic obstructive pulmonary disease is a condition involving perturbed barrier integrity coincident with both emphysema and inflammation of the airways, and smoking is considered a major risk factor. Claudins (Cldns) stabilize barriers and contribute to tight junctions by preventing paracellular transport of extracellular fluid constituents. METHODS: To determine Cldn6 was differentially influenced by tobacco smoke, Cldn6 was evaluated in cells and tissues by q-PCR, immunoblotting, and immunohistochemistry following exposure. Cldn6 transcriptional regulation was also assessed using luciferase reporter constructs. RESULTS: Q-PCR and immunoblotting revealed that Cldn6 was decreased in alveolar type II-like epithelial cells (A549) and primary small airway epithelial cells when exposed to cigarette smoke extract (CSE). Cldn6 was also markedly decreased in the lungs of mice exposed to acute tobacco smoke delivered by a nose-only automated smoke machine compared to controls. Luciferase reporter assays incorporating 0.5-kb, 1.0-kb, or 2.0-kb of the Cldn6 promoter revealed decreased transcription of Cldn6 following exposure to CSE. Cldn6 transcriptional regulation was also assessed in hypoxic conditions due to low oxygen tension observed during smoking. Hypoxia and hypoxia inducible factor-1 alpha caused decreased transcription of the Cldn6 gene via interactions with putative response elements in the proximal promoter sequence. CONCLUSIONS: These data reveal that tight junctional proteins such as Cldn6 are differentially regulated by tobacco-smoke exposure and that Cldns are potentially targeted when epithelial cells respond to tobacco smoke. Further research may show that Cldns expressed in tight junctions between parenchymal cells contribute to impaired structural integrity of the lung coincident with smoking.


Asunto(s)
Claudinas/biosíntesis , Pulmón/metabolismo , Oxígeno/metabolismo , Humo/efectos adversos , Células A549 , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Células Cultivadas , Claudinas/efectos adversos , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pulmón/patología , Ratones , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/efectos de los fármacos , Proteínas de Uniones Estrechas/efectos de los fármacos , Uniones Estrechas
14.
Neurobiol Aging ; 47: 192-200, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27614113

RESUMEN

In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 106 cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.


Asunto(s)
Movimiento Celular , Corteza Cerebral/citología , Ventrículos Cerebrales/citología , Sangre Fetal/citología , Hipocampo/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Tejido Parenquimatoso/citología , Médula Espinal/citología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Vértebras Cervicales , Perros , Humanos , Inmunohistoquímica , Inyecciones Intraventriculares , Masculino , Células-Madre Neurales , Enfermedades Neurodegenerativas/terapia
15.
J Nucl Med ; 57(10): 1518-1522, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27230924

RESUMEN

Background parenchymal enhancement (BPE), and the amount of fibroglandular tissue (FGT) assessed with MRI have been implicated as sensitive imaging biomarkers for breast cancer. The purpose of this study was to quantitatively assess breast parenchymal uptake (BPU) on 18F-FDG PET/CT as another valuable imaging biomarker and examine its correlation with BPE, FGT, and age. METHODS: This study included 129 patients with suspected breast cancer and normal imaging findings in one breast (BI-RADS 1), whose cases were retrospectively analyzed. All patients underwent prone 18F-FDG PET/CT and 3-T contrast-enhanced MRI of the breast. In all patients, interpreter 1 assessed BPU quantitatively using SUVmax Interpreters 1 and 2 assessed amount of FGT and BPE in the normal contralateral breast by subjective visual estimation, as recommended by BI-RADS. Interpreter 1 reassessed all cases and repeated the BPU measurements. Statistical tests were used to assess correlations between BPU, BPE, FGT, and age, as well as inter- and intrainterpreter agreement. RESULTS: BPU on 18F-FDG PET/CT varied among patients. The mean BPU SUVmax ± SD was 1.57 ± 0.6 for patients with minimal BPE, 1.93 ± 0.6 for mild BPE, 2.42 ± 0.5 for moderate BPE, and 1.45 ± 0.3 for marked BPE. There were significant (P < 0.001) moderate to strong correlations among BPU, BPE, and FGT. BPU directly correlated with both BPE and FGT on MRI. Patient age showed a moderate to strong indirect correlation with all 3 imaging-derived tissue biomarkers. The coefficient of variation for quantitative BPU measurements with SUVmax was 5.6%, indicating a high reproducibility. Interinterpreter and intrainterpreter agreement for BPE and FGT was almost perfect, with a κ-value of 0.860 and 0.822, respectively. CONCLUSION: The results of our study demonstrate that BPU varied among patients. BPU directly correlated with both BPE and FGT on MRI, and BPU measurements were highly reproducible. Patient age showed a strong inverse correlation with all 3 imaging-derived tissue biomarkers. These findings indicate that BPU may serve as a sensitive imaging biomarker for breast cancer prediction, prognosis, and risk assessment.


Asunto(s)
Envejecimiento/metabolismo , Mama/citología , Mama/patología , Fluorodesoxiglucosa F18/metabolismo , Imagen por Resonancia Magnética , Tejido Parenquimatoso/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Anciano , Transporte Biológico , Mama/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/diagnóstico por imagen , Tejido Parenquimatoso/patología , Adulto Joven
16.
PLoS One ; 11(5): e0155912, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27203695

RESUMEN

Mesenchymal stem cells (MSCs) have a promising role as a therapeutic agent for neurodegenerative diseases such as Alzheimer's disease (AD). Prior studies suggested that intra-arterially administered MSCs are engrafted into the brain in stroke or traumatic brain injury (TBI) animal models. However, a controversial standpoint exists in terms of the integrity of the blood brain barrier (BBB) in transgenic AD mice. The primary goal of this study was to explore the feasibility of delivering human umbilical cord-blood derived mesenchymal stem cells (hUCB-MSCs) into the brains of non-transgenic WT (C3H/C57) and transgenic AD (APP/PS1) mice through the intra-arterial (IA) route. Through two experiments, mice were infused with hUCB-MSCs via the right internal carotid artery and were sacrificed at two different time points: 6 hours (experiment 1) or 5 minutes (experiment 2) after infusion. In both experiments, no cells were detected in the brain parenchyma while MSCs were detected in the cerebrovasculature in experiment 2. The results from this study highlight that intra-arterial delivery of MSCs is not the most favorable route to be implemented as a potential therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Tejido Parenquimatoso/citología , Animales , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraarteriales , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Resultado del Tratamiento
17.
Sci Rep ; 6: 23270, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26997336

RESUMEN

Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion.


Asunto(s)
Fusión Celular , Células Madre Mesenquimatosas/fisiología , Animales , Células Cultivadas , Humanos , Trasplante de Células Madre Mesenquimatosas , Ratones , Tejido Parenquimatoso/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Activación Transcripcional , Transcriptoma
18.
J Mammary Gland Biol Neoplasia ; 21(1-2): 41-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26615610

RESUMEN

Elucidating cell hierarchy in the mammary gland is fundamental for understanding the mechanisms governing its normal development and malignant transformation. There is relatively little information on cell hierarchy in the bovine mammary gland, despite its agricultural potential and relevance to breast cancer research. Challenges in bovine-to-mouse xenotransplantation and difficulties obtaining bovine-compatible antibodies hinder the study of mammary stem-cell dynamics in this species. In-vitro indications of distinct bovine mammary epithelial cell populations, sorted according to CD24 and CD49f expression, have been provided. Here, we successfully transplanted these bovine populations into the cleared fat pads of immunocompromised mice, providing in-vivo evidence for the multipotency and self-renewal capabilities of cells that are at the top of the cell hierarchy (termed mammary repopulating units). Additional outgrowths from transplantation, composed exclusively of myoepithelial cells, were indicative of unipotent basal stem cells or committed progenitors. Sorting luminal cells according to E-cadherin revealed three distinct populations: luminal progenitors, and early- and late-differentiating cells. Finally, miR-200c expression was negatively correlated with differentiation levels in both the luminal and basal branches of the bovine mammary cell hierarchy. Together, these experiments provide further evidence for the presence of a regenerative entity in the bovine mammary gland and for the multistage differentiation process within the luminal lineage.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Glándulas Mamarias Animales/citología , Células Madre Multipotentes/citología , Tejido Parenquimatoso/citología , Células Madre/citología , Tejido Adiposo , Animales , Biomarcadores/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Bovinos , Separación Celular , Trasplante de Células , Células Cultivadas , Cruzamientos Genéticos , Femenino , Glándulas Mamarias Animales/inmunología , Glándulas Mamarias Animales/metabolismo , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/metabolismo , Células Madre Multipotentes/inmunología , Células Madre Multipotentes/metabolismo , Tejido Parenquimatoso/inmunología , Tejido Parenquimatoso/metabolismo , Interferencia de ARN , Trasplante de Células Madre , Células Madre/inmunología , Células Madre/metabolismo , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA