Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Protein Sci ; 33(6): e4997, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723110

RESUMEN

Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3ß3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by ß-ß interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the ß subunit interfaces, with subsequent targeted improvements of the subunits.


Asunto(s)
Estabilidad de Enzimas , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , Dioxigenasas/química , Dioxigenasas/metabolismo , Dioxigenasas/genética , Temperatura , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Concentración de Iones de Hidrógeno , Complejo III de Transporte de Electrones
2.
J Environ Manage ; 361: 121258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815428

RESUMEN

The rising accumulation of poly(ethylene terephthalate) (PET) waste presents an urgent ecological challenge, necessitating an efficient and economical treatment technology. Here, we developed chemical-biological module clusters that perform chemical pretreatment, enzymatic degradation, and microbial assimilation for the large-scale treatment of PET waste. This module cluster included (i) a chemical pretreatment that involves incorporating polycaprolactone (PCL) at a weight ratio of 2% (PET:PCL = 98:2) into PET via mechanical blending, which effectively reduces the crystallinity and enhances degradation; (ii) enzymatic degradation using Thermobifida fusca cutinase variant (4Mz), that achieves complete degradation of pretreated PET at 300 g/L PET, with an enzymatic loading of 1 mg protein per gram of PET; and (iii) microbial assimilation, where Rhodococcus jostii RHA1 metabolizes the degradation products, assimilating each monomer at a rate above 90%. A comparative life cycle assessment demonstrated that the carbon emissions from our module clusters (0.25 kg CO2-eq/kg PET) are lower than those from other established approaches. This study pioneers a closed-loop system that seamlessly incorporates pretreatment, degradation, and assimilation processes, thus mitigating the environmental impacts of PET waste and propelling the development of a circular PET economy.


Asunto(s)
Biodegradación Ambiental , Poliésteres , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Poliésteres/metabolismo , Poliésteres/química , Hidrolasas de Éster Carboxílico
3.
Chemosphere ; 359: 142314, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735489

RESUMEN

Continuously growing adoption of electronic devices in energy storage, human health and environmental monitoring systems increases demand for cost-effective, lightweight, comfortable, and highly efficient functional structures. In this regard, the recycling and reuse of polyethylene terephthalate (PET) waste in the aforementioned fields due to its excellent mechanical properties and chemical resistance is an effective solution to reduce plastic waste. Herein, we review recent advances in synthesis procedures and research studies on the integration of PET into energy storage (Li-ion batteries) and the detection of gaseous and biological species. The operating principles of such systems are described and the role of recycled PET for various types of architectures is discussed. Modifying the composition, crystallinity, surface porosity, and polar surface functional groups of PET are important factors for tuning its features as the active or substrate material in biological and gas sensors. The findings indicate that conceptually new pathways to the study are opened up for the effective application of recycled PET in the design of Li-ion batteries, as well as biochemical and catalytic detection systems. The current challenges in these fields are also presented with perspectives on the opportunities that may enable a circular economy in PET use.


Asunto(s)
Técnicas Biosensibles , Suministros de Energía Eléctrica , Gases , Tereftalatos Polietilenos , Reciclaje , Tereftalatos Polietilenos/química , Técnicas Biosensibles/métodos , Gases/análisis , Monitoreo del Ambiente/métodos
4.
Int J Biol Macromol ; 267(Pt 2): 131564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614174

RESUMEN

Contaminating microplastics can interact with food proteins in the food matrix and during digestion. This study investigated adsorption of chicken egg protein ovalbumin to polystyrene (PS, 110 and 260 µm) and polyethylene terephthalate (PET, 140 µm) MPs in acidic and neutral conditions and alterations in ovalbumin structure. Ovalbumin adsorption affinity depended on MPs size (smaller > larger), type (PS > PET) and pH (pH 3 > pH 7). In bulk solution, MPs does not change ovalbumin secondary structure significantly, but induces loosening (at pH 3) and tightening (at pH 7) of tertiary structure. Formed soft corona exclusively consists of full length non-native ovalbumin, while in hard corona also shorter ovalbumin fragments were found. At pH 7 soft corona ovalbumin has rearranged but still preserved level of ordered secondary structure, resulting in preserved thermostability and proteolytic stability, but decreased ability to form fibrils upon heating. Secondary structure changes in soft corona resemble changes in native ovalbumin induced by heat treatment (80 °C). Ovalbumin is abundantly present in corona around microplastics also in the presence of other egg white proteins. These results imply that microplastics contaminating food may bind and change structure and functional properties of the main egg white protein.


Asunto(s)
Microplásticos , Ovalbúmina , Tereftalatos Polietilenos , Poliestirenos , Ovalbúmina/química , Poliestirenos/química , Microplásticos/química , Tereftalatos Polietilenos/química , Concentración de Iones de Hidrógeno , Adsorción , Animales , Pollos , Estructura Secundaria de Proteína
5.
Environ Sci Pollut Res Int ; 31(23): 33443-33453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683426

RESUMEN

A new type of titanium phthalate (Ti-PA) catalyst was prepared by exchange method of phthalic acid and isopropyl titanate, which is never been reported before. The Ti-PA catalyst was characterized by FT-IR, TG, Uv-vis, BET, SEM, and EDS. The Ti-PA catalyst shows good catalytic activity in the alcoholysis reaction of polyethylene terephthalate (PET) and optimal experimental conditions for the alcoholysis process were optimized by response surface methodology; the Ti-PA catalyst provided a BHET yield of 81.98% for reaction lasting 3.98 h at 191 °C of 0.86% catalyst and 13.7 ml ethylene glycol; the model has good reliability. The kinetics and reaction mechanism of the process were explored and apparent activation energy is 75.52 kJ/mol. Finally, the good catalytic activity of Ti-PA was illustrated by comparing it with currently reported catalysts.


Asunto(s)
Ácidos Ftálicos , Tereftalatos Polietilenos , Titanio , Titanio/química , Tereftalatos Polietilenos/química , Catálisis , Ácidos Ftálicos/química , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
6.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395309

RESUMEN

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Asunto(s)
Burkholderiales , Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Reciclaje , Cinética , Burkholderiales/enzimología , Modelos Químicos
7.
ChemSusChem ; 17(10): e202301752, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38252197

RESUMEN

Biocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation. This included utilizing complementary activity assays to monitor the degradation of PET disks with varying crystallinity (XC), as well as determining enzymatic kinetic parameters for soluble PET fragments. The results indicate that an efficient PET-hydrolase, LCCICCG, operates through an endolytic mode of action, and that its activity is limited by conformational constraints in the PET polymer. Such constraints become more pronounced at high XC values, and this limits the density of productive sites on the PET surface. Endolytic chain-scissions are the dominant reaction type in the initial stage, and this means that little or no soluble organic product are released. However, endolytic cuts gradually and locally promote chain mobility and hence the density of attack sites on the surface. This leads to an upward concave progress curve; a behavior sometimes termed lag-phase kinetics.


Asunto(s)
Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Cinética , Cristalización , Hidrolasas/metabolismo , Hidrolasas/química , Biocatálisis , Burkholderiales/enzimología , Hidrólisis
8.
Enzyme Microb Technol ; 173: 110353, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979402

RESUMEN

Plastic pollution poses a significant environmental challenge, with poly(ethylene terephthalate) (PET) being a major contributor due to its extensive use in single use applications such as plastic bottles and other packaging material. Enzymatic degradation of PET offers a promising solution for PET recycling, but the enzyme kinetics in relation to the degree of crystallinity (XC) of the PET substrate are poorly understood. In this study, we investigated the hypersensitive enzyme kinetic response on PET at XC from ∼8.5-12% at 50 °C using the benchmark PET hydrolysing enzyme LCCICCG. We observed a substantial reduction in the maximal enzymatic reaction rate (invVmax) with increasing XC, corresponding to a 3-fold reduction in invVmax when the XC of PET increased from 8.6% to 12.2%. The kinetic analysis revealed that the level of the Mobile Amorphous Fraction (XMAF) was a better descriptor for the enzymatic degradation rate response than XC (or (100%-XC)). By continuous monitoring of the enzymatic reaction progress, we quantified the lag phase prolongation in addition to the steady-state kinetic rates (vss) of the reactions and found that the duration of the lag phase of a reaction could be predicted from the vss and XC by multiple linear regression modeling. The linear correlation between the duration of the lag phase and the vss of the enzymatic PET degradation affirmed that the LCCICCG worked via a random/endo-type enzymatic attack pattern. The longer lag phase at increased XC of PET is proposed to be due to increased substrate entanglement density as well as unproductive enzyme binding to the crystalline regions of PET. The findings enhance our understanding of PET enzymatic degradation kinetics and its dependence on substrate composition, i.e., XMAF and XC.


Asunto(s)
Ácidos Ftálicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Cinética , Etilenos , Hidrolasas/metabolismo
9.
Bioorg Chem ; 143: 107047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154387

RESUMEN

Chemical protein synthesis offers a powerful way to access otherwise-difficult-to-obtain proteins such as mirror-image proteins. Although a large number of proteins have been chemically synthesized to date, the acquisition to proteins containing hydrophobic peptide fragments has proven challenging. Here, we describe an approach that combines the removable backbone modification strategy and the peptide hydrazide-based native chemical ligation for the chemical synthesis of a 28 kDa full-length PET degrading enzyme IGGC (a higher depolymerization efficiency of variant leaf-branch compost cutinase (LCC)) containing hydrophobic peptide segments. The synthetic ICCG exhibits the enzymatic activity and will be useful in establishing the corresponding mirror-image version of ICCG.


Asunto(s)
Tereftalatos Polietilenos , Hidrolasas/química , Fragmentos de Péptidos , Péptidos/química , Tereftalatos Polietilenos/química
10.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003625

RESUMEN

Due to the extensive utilization of poly (ethylene terephthalate) (PET), a significant amount of PET waste has been discharged into the environment, endangering both human health and the ecology. As an eco-friendly approach to PET waste treatment, biodegradation is dependent on efficient strains and enzymes. In this study, a screening method was first established using polycaprolactone (PCL) and PET nanoparticles as substrates. A PET-degrading strain YX8 was isolated from the surface of PET waste. Based on the phylogenetic analysis of 16S rRNA and gyrA genes, this strain was identified as Bacillus safensis. Strain YX8 demonstrated the capability to degrade PET nanoparticles, resulting in the production of terephthalic acid (TPA), mono (2-hydroxyethyl) terephthalic acid (MHET), and bis (2-hydroxyethyl) terephthalic acid (BHET). Erosion spots on the PET film were observed after incubation with strain YX8. Furthermore, the extracellular enzymes produced by strain YX8 exhibited the ability to form a clear zone on the PCL plate and to hydrolyze PET nanoparticles to generate TPA, MHET, and BHET. This work developed a method for the isolation of PET-degrading microorganisms and provides new strain resources for PET degradation and for the mining of functional enzymes.


Asunto(s)
Etilenos , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/química , Filogenia , ARN Ribosómico 16S/genética , Biodegradación Ambiental
11.
Chemosphere ; 344: 140435, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832880

RESUMEN

Biofilm formation on plastic surface is a growing concern because it can alter the plastic surface properties and exacerbate the ecological risk. Identifying key factors that affecting biofilm formation is critical for effective pollution control. In this study, the poly (ethylene terephthalate) (PET) was aged in water and air conditions with UV irradiation, then incubated in the digestate of food waste anaerobic digestion to allow biofilm formation. Surface analysis techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), were utilized to investigated the changes in the topography, roughness, hydrophily, and functional groups change of the PET surface during the aging process. Confocal laser scanning microscopy (CLSM) was used to determine the distribution of microorganisms on the PET surface after incubation in the digestate. This study focused on understanding the interactions between the PET surface and biofilm to identify critical surface factors that affect biofilm formation. Results showed that the four months aging process decreased the contact angle of the PET surface from 96.92° to 76.08° and 68.97° in water and air conditions, respectively, corresponding to an increase of 44% and 70% in the surface energy. Additionally, aging in air conditions led to a rougher surface compared to water conditions. The arithmetic roughness average (Ra) of the PET-Water was 11.0 nm, comparable to that of the pristine PET, while the value of PET-Air was much higher (43.9 nm). The results further indicated that biofilm formation during anaerobic digestion was more sensitive to roughness than hydrophily. The PET surface aged in air conditions provided a more suitable environment for microbial reproduction, leading to the aggradation of living cells.


Asunto(s)
Tereftalatos Polietilenos , Eliminación de Residuos , Tereftalatos Polietilenos/química , Alimentos , Anaerobiosis , Biopelículas , Agua/química , Etilenos , Propiedades de Superficie
12.
Biotechnol J ; 18(12): e2300119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594123

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of post-consumer waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and MHETase from Ideonella sakaiensis and the ICCG variant of leaf-branch compost cutinase (LCCICCG ) were codon-optimized and expressed in Escherichia coli BL21(DE3) for high-yield production. To further lower the enzyme production cost, a pelB leader sequence was fused to LCCICCG so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM) was fused to the C-terminus of LCCICCG . The resulting four different LCCICCG variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to 1.2 g L-1 . Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g L-1 recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.


Asunto(s)
Ácidos Ftálicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Hidrolasas/química , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Etilenos
13.
J Colloid Interface Sci ; 646: 198-208, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196493

RESUMEN

Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to ß-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed ß-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Hidrolasas/metabolismo , Hidrólisis , Péptidos/química , Dominio Catalítico
14.
ChemSusChem ; 16(13): e202300291, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073816

RESUMEN

The rate response of poly(ethylene terephthalate) (PET)-hydrolases to increased substrate crystallinity (XC ) of PET manifests as a rate-lowering effect that varies significantly for different enzymes. Herein, we report the influence of XC on the product release rate of six thermostable PET-hydrolases. All enzyme reactions displayed a distinctive lag phase until measurable product formation occurred. The duration of the lag phase increased with XC . The recently discovered PET-hydrolase PHL7 worked efficiently on "amorphous" PET disks (XC ≈10 %), but this enzyme was extremely sensitive to increased XC , whereas the enzymes LCCICCG , LCC, and DuraPETase had higher tolerance to increases in XC and had activity on PET disks having XC of 24.4 %. Microscopy revealed that the XC -tolerant hydrolases generated smooth and more uniform substrate surface erosion than PHL7 during reaction. Structural and molecular dynamics analysis of the PET-hydrolyzing enzymes disclosed that surface electrostatics and enzyme flexibility may account for the observed differences.


Asunto(s)
Hidrolasas , Ácidos Ftálicos , Tereftalatos Polietilenos/química , Etilenos
15.
ChemSusChem ; 16(8): e202202277, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36811288

RESUMEN

Enzyme-based depolymerization is a viable approach for recycling of poly(ethylene terephthalate) (PET). PETase from Ideonella sakaiensis (IsPETase) is capable of PET hydrolysis under mild conditions but suffers from concentration-dependent inhibition. In this study, this inhibition is found to be dependent on incubation time, the solution conditions, and PET surface area. Furthermore, this inhibition is evident in other mesophilic PET-degrading enzymes to varying degrees, independent of the level of PET depolymerization activity. The inhibition has no clear structural basis, but moderately thermostable IsPETase variants exhibit reduced inhibition, and the property is completely absent in the highly thermostable HotPETase, previously engineered by directed evolution, which simulations suggest results from reduced flexibility around the active site. This work highlights a limitation in applying natural mesophilic hydrolases for PET hydrolysis and reveals an unexpected positive outcome of engineering these enzymes for enhanced thermostability.


Asunto(s)
Ácidos Ftálicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Hidrolasas , Ácidos Ftálicos/química , Etilenos
16.
Folia Microbiol (Praha) ; 68(4): 627-632, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36807129

RESUMEN

Microbial infections and nosocomial diseases associated with biomaterial have become a major problem of public health and largely lead to revision surgery, which is painful and quite expensive for patients. These infections are caused by formation of biofilm, which present a difficulty of treatment with conventional antibiotics. The aim of our study is to investigate the theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa on four 3-dimensional printing filament materials used in the manufacture of medical equipment. Thus, the physicochemical properties of these microorganisms and all filament materials were determined using the contact angle measurements. Our results indicated that bacterial surfaces were hydrophilic, strongly electron donating and weakly electron accepting. In contrast, nylon, acrylonitrile butadiene-styrene, polyethylene terephthalate, and polylactic acid surfaces were hydrophobic and more electron-donor than electron-acceptor. In addition, according to the values of total free interaction energy ΔGTotal, Staphylococcus aureus was found unable to adhere to the filament materials except polyethylene terephthalate surface. However, Pseudomonas aeruginosa showed adhesion capacity only for acrylonitrile butadiene-styrene and polyethylene terephthalate surfaces. These findings imply that the usage of these 3D printed materials in the medical area necessitates more research into enhancing their resistance to bacterial adherence.


Asunto(s)
Acrilonitrilo , Infección Hospitalaria , Infecciones Estafilocócicas , Humanos , Adhesión Bacteriana , Pseudomonas aeruginosa , Staphylococcus aureus , Butadienos/farmacología , Tereftalatos Polietilenos/química , Biopelículas , Estirenos
17.
J Hazard Mater ; 445: 130407, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444813

RESUMEN

A comparison was performed on various methods detecting the volatile contaminants (VCs) in recycled poly(ethylene terephthalate) (rPET) flakes, the results demonstrated that head-space solid phase micro-extraction combined with comprehensive two-dimensional gas chromatograph-tandem quadrupole-time-of-flight mass spectrometry (HS-SPME-GC×GC-QTOF-MS) was a sensitive, effective, accurate method, and successfully applied to analyze 57 rPET flakes collected from different recycling plants in China. A total of 212 VCs were tentatively identified, and the possible source were associated with plastic, food, and cosmetics. 45 VCs are classified as high-priority compounds with toxicity level IV or V and may pose a risk to human health. Combined chemometrics for further analysis revealed that significant differences among these three geographical recycling regions. 6, 7, and 6 volatile markers were chosen based on VIP values and S-plot among plant1 plant 2 and plant 3, respectively. The markers differed significantly between recycled rPET samples in three geographical recycling regions based on chemometrics analysis. The initial classification rate and cross-validation accuracy were 100% on the identified VCs. These significant differences demonstrate that a systematic study is needed to obtain a comprehensive data on the contamination of rPET for food contact applications in China.


Asunto(s)
Tereftalatos Polietilenos , Compuestos Orgánicos Volátiles , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Tereftalatos Polietilenos/química , Quimiometría , Microextracción en Fase Sólida/métodos , Etilenos , Compuestos Orgánicos Volátiles/análisis
18.
Chembiochem ; 24(3): e202200516, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399069

RESUMEN

Bioprocessing of polyester waste has emerged as a promising tool in the quest for a cyclic plastic economy. One key step is the enzymatic breakdown of the polymer, and this entails a complicated pathway with substrates, intermediates, and products of variable size and solubility. We have elucidated this pathway for poly(ethylene terephthalate) (PET) and four enzymes. Specifically, we combined different kinetic measurements and a novel stochastic model and found that the ability to hydrolyze internal bonds in the polymer (endo-lytic activity) was a key parameter for overall enzyme performance. Endo-lytic activity promoted the release of soluble PET fragments with two or three aromatic rings, which, in turn, were broken down with remarkable efficiency (kcat /KM values of about 105  M-1 s-1 ) in the aqueous bulk. This meant that approximatly 70 % of the final, monoaromatic products were formed via soluble di- or tri-aromatic intermediates.


Asunto(s)
Hidrolasas , Ácidos Ftálicos , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Ácidos Ftálicos/metabolismo , Etilenos
19.
Nat Commun ; 13(1): 7850, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543766

RESUMEN

Enzymatic deconstruction of poly(ethylene terephthalate) (PET) is under intense investigation, given the ability of hydrolase enzymes to depolymerize PET to its constituent monomers near the polymer glass transition temperature. To date, reported PET hydrolases have been sourced from a relatively narrow sequence space. Here, we identify additional PET-active biocatalysts from natural diversity by using bioinformatics and machine learning to mine 74 putative thermotolerant PET hydrolases. We successfully express, purify, and assay 51 enzymes from seven distinct phylogenetic groups; observing PET hydrolysis activity on amorphous PET film from 37 enzymes in reactions spanning pH from 4.5-9.0 and temperatures from 30-70 °C. We conduct PET hydrolysis time-course reactions with the best-performing enzymes, where we observe differences in substrate selectivity as function of PET morphology. We employed X-ray crystallography and AlphaFold to examine the enzyme architectures of all 74 candidates, revealing protein folds and accessory domains not previously associated with PET deconstruction. Overall, this study expands the number and diversity of thermotolerant scaffolds for enzymatic PET deconstruction.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Filogenia , Hidrólisis , Etilenos
20.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364480

RESUMEN

Public health concerns associated with the potential leaching of substances from Polyethylene terephthalate (PET) packaging have been raised due to the role of phthalates as endocrine-disrupting chemicals or obesogens. In particular, changes in the environment such as pH, temperature, and irradiation can improve contaminant migration from PET food packaging. In this study, the in vitro effects of p-phthalates terephthalic acid (TPA) and dimethyl terephthalate (DMT) on murine adipocytes (3T3-L1) were evaluated using concentrations that might be obtained in adult humans exposed to contaminated sources. TPA and, in particular, DMT exposure during 3T3-L1 differentiation increased the cellular lipid content and induced adipogenic markers PPAR-γ, C/EBPß, FABP4, and FASN, starting from low nanomolar concentrations. Interestingly, the adipogenic action of TPA- and DMT-induced PPAR-γ was reverted by ICI 182,780, a specific antagonist of the estrogen receptor. Furthermore, TPA and DMT affected adipocytes' thermogenic program, reducing pAMPK and PGC-1α levels, and induced the NF-κB proinflammatory pathway. Given the observed effects of biologically relevant chronic concentrations of these p-phthalates and taking into account humans' close and constant contact with plastics, it seems appropriate that ascertaining safe levels of TPA and DMT exposure is considered a high priority.


Asunto(s)
Adipogénesis , Tereftalatos Polietilenos , Humanos , Adulto , Ratones , Animales , Tereftalatos Polietilenos/química , Adipocitos , Células 3T3-L1 , Termogénesis , PPAR gamma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA