Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
ACS Appl Mater Interfaces ; 16(24): 30819-30832, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38845592

RESUMEN

Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.


Asunto(s)
Alginatos , Antibacterianos , Hierro , Animales , Alginatos/química , Hierro/química , Antibacterianos/química , Antibacterianos/farmacología , Ratas , Piel/efectos de los fármacos , Nanocompuestos/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Staphylococcus aureus/efectos de los fármacos , Permeabilidad , Tetraciclina/química , Tetraciclina/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38643813

RESUMEN

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Asunto(s)
Antibacterianos , Chlorella , Fotosíntesis , Contaminantes Químicos del Agua , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Fotosíntesis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Tetraciclina/farmacología , Tetraciclina/toxicidad , Claritromicina/farmacología , Enrofloxacina/farmacología , Enrofloxacina/toxicidad , Sulfametazina/toxicidad , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Luz , Clorofila/metabolismo
3.
Front Immunol ; 15: 1360063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558809

RESUMEN

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Riboswitch , Ratones , Humanos , Animales , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Terapia Genética , Interleucina-12/genética , Interleucina-12/metabolismo , Tetraciclina/farmacología
4.
Helicobacter ; 29(2): e13060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38581134

RESUMEN

BACKGROUND: Treatment of Helicobacter pylori gastric infection is complex and associated with increased rates of therapeutic failure. This research aimed to characterize the H. pylori infection status, strain resistance to antimicrobial agents, and the predominant lesion pattern in the gastroduodenal mucosa of patients with clinical suspicion of refractoriness to first- and second-line treatment who were diagnosed and treated in a health center in Guayaquil, Ecuador. METHODS: A total of 374 patients with upper gastrointestinal symptoms and H. pylori infection were preselected and prescribed one of three triple therapy regimens for primary infection, as judged by the treating physician. Subsequently, 121 patients who returned to the follow-up visit with persistent symptoms after treatment were studied. RESULTS: All patients had H. pylori infection. Histopathological examination diagnosed chronic active gastritis in 91.7% of cases; premalignant lesions were observed in 15.8%. The three triple therapy schemes applied showed suboptimal efficacy (between 47.6% and 77.2%), with the best performance corresponding to the scheme consisting of a proton pump inhibitor + amoxicillin + levofloxacin. Bacterial strains showed very high phenotypic resistance to all five antimicrobials tested: clarithromycin, 82.9%; metronidazole, 69.7%; amoxicillin and levofloxacin, almost 50%; tetracycline, 38.2%. Concurrent resistance to clarithromycin-amoxicillin was 43.4%, to tetracycline-metronidazole 30.3%, to amoxicillin-levofloxacin 27.6%, and to clarithromycin-metronidazole 59.2%. CONCLUSIONS: In vitro testing revealed resistance to all five antibiotics, indicating that H. pylori exhibited resistance phenotypes to these antibiotics. Consequently, the effectiveness of triple treatments may be compromised, and further studies are needed to assess refractoriness in quadruple and concomitant therapies.


Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacología , Claritromicina/uso terapéutico , Metronidazol/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Levofloxacino/farmacología , Ecuador , Antibacterianos/farmacología , Amoxicilina/farmacología , Tetraciclina/uso terapéutico , Tetraciclina/farmacología , Quimioterapia Combinada
5.
Bioprocess Biosyst Eng ; 47(8): 1163-1182, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38491194

RESUMEN

Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.


Asunto(s)
Antineoplásicos , Pseudomonas aeruginosa , Tetraciclina , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Tetraciclina/farmacología , Tetraciclina/química , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Animales , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Farmacorresistencia Bacteriana , Células RAW 264.7 , Nanopartículas/química
6.
Environ Res ; 248: 118271, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262515

RESUMEN

Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.


Asunto(s)
Antibacterianos , Carbón Orgánico , Microbiota , Humanos , Antibacterianos/farmacología , Sulfametoxazol , Hierro , Genes Bacterianos , Tetraciclina/farmacología , Farmacorresistencia Microbiana/genética , Bacterias
7.
J Med Microbiol ; 72(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37962209

RESUMEN

Introduction. Helicobacter pylori is the leading cause of peptic ulcers and gastric cancer. The most common treatment regimens use combinations of two or three antibiotics and a proton pump inhibitor (PPI) to suppress stomach acid. The World Health Organization designated clarithromycin-resistant H. pylori as a high priority pathogen for drug development, due to increasing antibiotic resistance globally.Hypothesis/Gap Statement. There is no routine surveillance of H. pylori primary antimicrobial sensitivities in the UK, and published data are lacking.Aim. This study aimed to characterize antimicrobial sensitivities of isolates collected in Nottingham, UK, between 2001 and 2018.Methodology. Gastric biopsy samples were collected, with informed written consent and ethics approval, from 162 patients attending the Queen's Medical Centre in Nottingham for an upper GI tract endoscopy. Antibiotic sensitivity was assessed using E-Tests and a more cost-effective disc diffusion test.Results. The clarithromycin, amoxicillin and levofloxacin disc diffusion tests provided identical results to E-Tests on a subset of 30 isolates. Disparities were observed in the metronidazole test results, however. In total, 241 isolates from 162 patients were tested using at least one method. Of all isolates, 28 % were resistant to clarithromycin, 62 % to metronidazole and 3 % to amoxicillin, which are used in first-line therapies. For those antibiotics used in second- and third-line therapies, 4 % were resistant to levofloxacin and none of the isolates were resistant to tetracycline. Resistance to more than one antibiotic was found in 27 % of isolates. The frequency of patients with a clarithromycin-resistant strain increased dramatically over time: from 16 % between 2001 and 2005 to 40 % between 2011 and 2018 (P=0.011). For the same time periods, there was also an increase in those with a metronidazole-resistant strain (from 58 to 78 %; P=0.05). The frequencies of clarithromycin and metronidazole resistance were higher in isolates from patients who had previously received eradication therapy, compared to those who had not (40 % versus 77 %, and 80 % versus 92 %, respectively). Of 79 pairs of isolates from the antrum and corpus regions of the same patient's stomach, only six had differences in their antimicrobial susceptibility profiles.Conclusion. Although there was high and increasing resistance to clarithromycin and metronidazole, there was no resistance to tetracycline and the frequencies of amoxicillin and levofloxacin resistance were very low.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacología , Claritromicina/uso terapéutico , Metronidazol/uso terapéutico , Levofloxacino/uso terapéutico , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/epidemiología , Incidencia , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , Tetraciclina/farmacología , Farmacorresistencia Microbiana , Reino Unido/epidemiología
8.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003216

RESUMEN

The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFß1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFß1) protein secretion, and the effect of MSC-TetOff-TGFß1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFß1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFß1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFß1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Células Madre Mesenquimatosas , Núcleo Pulposo , Humanos , Ratas , Animales , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Tetraciclina/farmacología , Antibacterianos/farmacología , Células Madre Mesenquimatosas/metabolismo
9.
Biochem Pharmacol ; 218: 115906, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37951366

RESUMEN

Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.


Asunto(s)
Burkholderia cenocepacia , Humanos , Burkholderia cenocepacia/genética , Percepción de Quorum/genética , Virulencia , Tiramina/farmacología , Antibacterianos/farmacología , Tetraciclina/farmacología , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
10.
Mikrobiyol Bul ; 57(4): 608-624, 2023 Oct.
Artículo en Turco | MEDLINE | ID: mdl-37885389

RESUMEN

In this study, it was aimed to investigate the antimalarial activity of cinnamaldehyde (CIN) and cannabidiol (CBD) which have shown various biological activities such as potent antimicrobial activity and eravacycline (ERA), a new generation tetracycline derivative, in an in vivo malaria model. The cytotoxic activities of the active substances were determined by the MTT method against L929 mouse fibroblasts and their antimalarial activity were determined by the four-day test in an in vivo mouse model. In this study, five groups were formed: the CIN group, the CBD group, the ERA group, the chloroquine group (CQ) and the untreated group (TAG). 2.5 x 107 parasites/mL of P.berghei-infected erythrocyte suspension was administered IP to all mice. The determined doses of active substances were given to the mice by oral gavage in accordance with the four-day test and the parasitemia status in the mice was controlled for 21 days with smear preparations made from the blood taken from the tail end of the mice. The IC50 values, which express the cytotoxic activity values of the active substances were determined as 27.55 µg/mL, 16.40 µM and 48.82 µg/mL for CIN, CBD and ERA, respectively. The mean parasitemia rate in untreated mice was 33% on day nine and all mice died on day 11. On the ninth day, when compared with the TAG group, no parasites were observed in the CIN group, while the average parasitemia was 0.08% in the CBD group and 17.8% in the ERA group. Compared to the mice in the TAG group, the life expectancy of the other groups was prolonged by eight days in the CIN group, 12 days in the CBD group and eight days in the ERA group. It has been determined that all three active subtances tested in this study suppressed the development of Plasmodium parasites in an in vivo mouse model and prolonged the life span of the mice. It is thought that the strong antimalarial activity of CIN and CBD shown in the study and the possible positive effect of ERA on the clinical course can be improved by combining them with the existing and potential antimalarial molecules.


Asunto(s)
Antimaláricos , Cannabidiol , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium berghei , Extractos Vegetales/farmacología , Malaria/tratamiento farmacológico , Malaria/parasitología , Tetraciclina/farmacología , Tetraciclina/uso terapéutico
11.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37777836

RESUMEN

Bacterial population exposed to stressful antibiotic conditions consists of various subpopulations such as tolerant, persister, and resistant cells. The aim of this study was to evaluate the phenotypic heterogeneity of Salmonella Typhimurium preadapted to sublethal concentrations of antibiotics. Salmonella Typhimurium cells were treated with 1/2 × MIC of antibiotics for the first 48 h and successively 1 × MIC for the second 24 h at 37°C, including untreated control (CON), no antibiotic and 1 × MIC ciprofloxacin (NON-CIP), 1/2 × MIC ciprofloxacin and 1 × MIC ciprofloxacin (CIP-CIP), 1/2 × MIC tetracycline and 1 × MIC ciprofloxacin (TET-CIP), no antibiotic and 1 × MIC tetracycline (NON-TET), 1/2 × MIC ciprofloxacin and 1 × MIC tetracycline (CIP-TET), and 1/2 × MIC tetracycline and 1 × MIC tetracycline (TET-TET). All treatments were evaluated by antibiotic susceptibility, ATP level, relative fitness, cross-resistance, and persistence. S. Typhimurium cells were more susceptible to non-adapted NON-CIP and NON-TET (>3-log reduction) than pre-adapted CIP-CIP, TET-CIP, CIP-TET, and TET-TET. CON exhibited the highest ATP level, corresponding to the viable cell number. The relative fitness levels were more than 0.95 for all treatments, except for NON-CIP (0.78). The resistance to ciprofloxacin and tetracycline was increased at all treatments with the exception of NON-TET. The persister cells were noticeably induced at CIP-TET treatment, showing more than 5 log CFU mL-1. The results suggest that the antibiotic preadaptation led to heterogeneous populations including persisters that can develop to resistance. This study provides new insight in the bacterial persistence associated with their potential risk and paves the way to design antibiotic therapy targeting dormant bacteria.


Asunto(s)
Ciprofloxacina , Salmonella typhimurium , Ciprofloxacina/farmacología , Salmonella typhimurium/genética , Antibacterianos/farmacología , Tetraciclina/farmacología , Adenosina Trifosfato , Pruebas de Sensibilidad Microbiana
12.
Sci Rep ; 13(1): 14570, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666979

RESUMEN

Monkeypox viral infection is an emerging threat and a major concern for the human population. The lack of drug molecules to treat this disease may worsen the problem. Identifying potential drug targets can significantly improve the process of developing potent drug molecules for treating monkeypox. The proteins responsible for viral replication are attractive drug targets. Identifying potential inhibitors from known drug molecules that target these proteins can be key to finding a cure for monkeypox. In this work, two viral proteins, DNA-dependent RNA polymerase (DdRp) and viral core cysteine proteinase, were considered as potential drug targets. Sixteen antibiotic drugs from the tetracycline class were screened against both viral proteins through high-throughput virtual screening. These tetracycline class of antibiotic drugs have the ability to inhibit bacterial protein synthesis, which makes these antibiotics drugs a prominent candidate for drug repurposing. Based on the screening result obtained against DdRp, top two compounds, namely Tigecycline and Eravacycline with docking scores of - 8.88 and - 7.87 kcal/mol, respectively, were selected for further analysis. Omadacycline and minocycline, with docking scores of - 10.60 and - 7.51 kcal/mol, are the top two compounds obtained after screening proteinase with the drug library. These compounds, along with reference compounds GTP for DdRp and tecovirimat for proteinase, were used to form protein-ligand complexes, followed by their evaluation through a 300 ns molecular dynamic simulation. The MM/GBSA binding free energy calculation and principal components analysis of these selected complexes were also conducted for understanding the dynamic stability and binding affinity of these compounds with respective target proteins. Overall, this study demonstrates the repurposing of tetracycline-derived drugs as a therapeutic solution for monkeypox viral infection.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Reposicionamiento de Medicamentos , Antibacterianos/farmacología , Tetraciclina/farmacología , Minociclina , Descubrimiento de Drogas , Péptido Hidrolasas
13.
PeerJ ; 11: e15611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456872

RESUMEN

Background and aim: Efficacy of Helicobacter pylori (H. pylori) eradication is related to the local antimicrobial resistance epidemiology. We aimed to investigate the antibiotic resistance of H. pylori in Fujian, China. Methods: H. pylori-infected patients in four centers were enrolled in the study from Oct 2019 to Jan 2022. The bacteria were isolated, cultured and identified from the biopsy of patients' gastric mucosa samples. Antimicrobial susceptibility testing was performed by a modified broth microdilution method for H. pylori to seven guideline-recommended antibiotics and seven potential choices for H. pylori eradication. Results: A total of 205 H. pylori strains were isolated. The resistance rates of amoxicillin (AMX), amoxicillin and clavulanate potassium (AMC), cefixime (CFM), gentamicin (GEN), tetracycline (TET), doxycycline (DOX), azithromycin (AZM), clarithromycin (CLR), levofloxacin (LVFX), sparfloxacin (SPFX), metronidazole (MTZ), tinidazole (TID), rifampicin (RFP) and furazolidone (FZD) were 11.22%, 12.20%, 7.32%, 12.20%, 4.88%, 4.39%, 44.39%, 43.90%, 30.24%, 21.46%, 40.98%, 45.85%, 5.37% and 10.24%, respectively. The rates of pan-sensitivity, single, double, triple and multiple resistance for seven guideline-recommended antibiotics were 32.68%, 30.24%, 13.17%, 7.76%, and 14.15%, respectively. The main double-resistance patterns were CLR+MTZ (10/205, 5%) and CLR+LVFX (9/205, 4%). The main triple-resistance pattern was CLR+MTZ+ LVFX (15/205, 7%). Conclusions: In Fujian, the prevalence of H. pylori resistance to AZM, CLR, LVFX, SPFX, MTZ, and TID was high, whereas that to AMX, AMC, GEN, CFM, TET, DOX, RFP and FZD was relatively low. CFM and DOX are promising new choices for H. pylori eradication.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Antibacterianos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Metronidazol/farmacología , Claritromicina/farmacología , Amoxicilina/farmacología , Tetraciclina/farmacología , Farmacorresistencia Bacteriana , Furazolidona/farmacología , Cefixima/farmacología , Doxiciclina/farmacología , Levofloxacino/farmacología
14.
PeerJ ; 11: e15268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214095

RESUMEN

Background: The prevalence of Helicobacter pylori (H. pylori) keeps rising while the eradication rate continues to decline due to the increasing antibiotic resistance. Regional variations of antimicrobial resistance to H. pylori have been recommended by guidelines in recent years. This study aims to investigate the antibiotic resistance rate of H. pylori and its association with infected subjects' characteristics in Liaoning Province, an area in north China. Methods: Gastric tissues from 178 H. pylori positive participants without previous antibiotic use within four weeks were collected for H. pylori culture. Antibiotic susceptibility to furazolidone (AOZ), tetracycline (TC), levofloxacin (LFX), metronidazole (MET), clarithromycin (CLA), and amoxicillin (AMX) were examined with the agar dilution method. Associations between H. pylori resistance and patient characteristics were further analysed. Results: No resistance was observed in AOZ or TC. For LFX, MET, CLA, and AMX, the overall resistance rates were 41.10%, 79.14%, 71.78%, and 22.09% respectively. There were significant differences between resistance to CLA and MALToma (P = 0.021), and between resistance to MET and age (P < 0.001). Conclusions: The primary resistant rates of LEX, MET, CLA, and AMX were relatively high in Liaoning. Treatment effectiveness improvement could be achieved by prior antimicrobial susceptibility tests before antibiotic prescription.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Claritromicina/farmacología , Metronidazol , Amoxicilina , Levofloxacino/farmacología , Tetraciclina/farmacología , China/epidemiología , Factores de Riesgo
15.
Ecotoxicol Environ Saf ; 253: 114675, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822060

RESUMEN

Relying on the high mobility of water flow, the dissemination of antibiotic resistance genes (ARGs) in the water tends to be exacerbated and enlarged. It caused negative impacts on a wider scope of the environment. The ARGs dissemination monitoring and the methods efficiently reducing their concentration in water became the focus of interest. Green chemicals with antibacterial effects such as tea polyphenols (TPs) and catechins (CA) have been considered as auxiliary disinfectants for ARGs removal in the water environment. However, the antibacterial performance of TPs and CA under the stress of external antibiotics still lacks sufficient research. The results show that more operational taxonomic units can be observed in water samples with TPs and CA than in those without the ingredients under pressure of tetracycline. An unexpected increase along with the increase of ARGs concentrations and the diversity of microbial communities under the low-concentration TPs or CA (1 mg/L). Besides, under the stress of tetracycline, the inhibition of TPs was detected to be strengthened for increase of inti1 and tetC but weakened towards for the increase of tetA. Whilst CA substantially diminished abundances of tetC and tetA under tetracycline pressure. This research demonstrated that TPs and CA are able to assuage development of ARGs under the pressure of antibiotic in water system.


Asunto(s)
Catequina , Microbiota , Antibacterianos/farmacología , Catequina/farmacología , Genes Bacterianos , Tetraciclina/farmacología , Farmacorresistencia Microbiana/genética , Agua/farmacología , , Resistencia a la Tetraciclina/genética
16.
FEBS Open Bio ; 12(10): 1896-1908, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36062323

RESUMEN

The tetracycline repressor (tetR)-regulated system is a widely used tool to specifically control gene expression in mammalian cells. Based on this system, we generated a human osteosarcoma cell line, which allows for the inducible expression of an EGFP fusion of the TAR DNA-binding protein 43 (TDP-43), which has been linked to neurodegenerative diseases. Consistent with previous findings, TDP-43 overexpression led to the accumulation of aggregates and limited the viability of U2OS. Using this inducible system, we conducted a chemical screen with a library that included FDA-approved drugs. While the primary screen identified several compounds that prevented TDP-43 toxicity, further experiments revealed that these chemicals abrogated the doxycycline-dependent TDP-43 expression. This antagonistic effect was observed with both doxycycline and tetracycline, and in several Tet-On cell lines expressing different genes, confirming the general effect of these compounds as inhibitors of the tetR system. Using the same cell line, a genome-wide CRISPR/Cas9 screen identified epigenetic regulators such as the G9a methyltransferase and TRIM28 as potential modifiers of TDP-43 toxicity. Yet again, further experiments revealed that G9a inhibition or TRIM28 loss prevented doxycycline-dependent expression of TDP-43. In summary, we have identified new chemical and genetic regulators of the tetR system, thereby raising awareness of the limitations of this approach to conduct chemical or genetic screening in mammalian cells.


Asunto(s)
Doxiciclina , Proteínas Represoras , Antibacterianos , Proteínas de Unión al ADN/genética , Doxiciclina/farmacología , Expresión Génica , Pruebas Genéticas , Humanos , Metiltransferasas/genética , Proteínas Represoras/metabolismo , Tetraciclina/farmacología , Factores de Transcripción/genética
17.
Medicina (Kaunas) ; 58(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36143966

RESUMEN

Background and Objectives: In spite of the fact that antibiotics are considered to be the cornerstone of modern medicine, their use in the treatment of cancer remains controversial. In the present study, the main objective was to examine the effects of two antibiotics-tetracycline and ampicillin-on the viability, morphology, migration, and organization and structure of the nuclei and the actin fiber network of pharyngeal carcinoma cells-Detroit-562. Materials and Methods: In order to determine the viability of the cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was applied after the cells were stimulated with five concentrations of tetracycline and ampicillin (10, 25, 50, 75, and 100 µM) for 72 h. A scratch assay was used to assess the migration ability of the cells. For the visualization of the nuclei and actin fibers, 4,6-diamidino-2-phenylindole (Dapi) and Rhodamine-Phalloidin were used. Results: There are different effects of tetracycline and ampicillin. Thus, tetracycline: (i) exhibited a concentration-dependent cytotoxic effect, decreasing cell viability to approximately 46%; (ii) inhibits cellular migration up to 16% compared to 60% for control cells; and (iii) induces changes in cell morphology as well as apoptotic changes in the nucleus and F-actin fibers. In contrast, in the case of ampicillin, an increase in viability up to 113% was observed at 10 µM, while a decrease in viability up to approximately 94% was observed at the highest concentration tested (100 µM). Conclusions: The results indicated a different effect regarding the impact on pharyngeal carcinoma cells. Thus, tetracycline has a concentration-dependent cytotoxic effect, while in the case of ampicillin a slight stimulation of cell viability was observed.


Asunto(s)
Antineoplásicos , Carcinoma , Actinas , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Tetraciclina/farmacología
18.
ACS Appl Mater Interfaces ; 14(38): 43035-43049, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36124878

RESUMEN

Antibacterial hydrogels have gradually become a powerful weapon to treat bacterially infected wounds and accelerate healing. In this paper, we designed a small-molecule self-healing antibacterial hydrogel containing 100% drug-loaded benzyl 3ß-amino-11-oxo-olean-12-en-30-oate (GN-Bn), which was governed by π-π stacking, hydrogen bonding, and van der Waals forces. Due to the carrier-free design concept, the problems of interbatch variability during sample preparation and carrier-related toxicity can be effectively avoided. Moreover, the GN-Bn hydrogel exhibited promising antibacterial activities against multidrug-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of the GN-Bn hydrogel was 1.5625 nmol/mL, which was lower than those against clinical agents such as norfloxacin, penicillin, and tetracycline. This is attributed to its unique antibacterial mechanism that aims at killing bacteria or preventing their growth by regulating arginine biosynthesis and metabolism through both transcriptomic (RNA-seq) analysis and quantitative polymerase chain reaction (qPCR) analysis. In addition, the GN-Bn hydrogel can also inhibit proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) to promote wound healing. Collectively, the GN-Bn hydrogel elicited dual therapeutic effects on an MRSA-infected full-thickness skin wound model through its antibacterial and anti-inflammatory activities, which is attributed to the fact that the GN-Bn hydrogel has multiple advantages including sufficient mechanical stability, biocompatibility, and unique antibacterial mechanisms, making it significantly accelerate MRSA-infected full-thickness skin wound healing as a wound dressing. In a word, the GN-Bn antibacterial hydrogel dressing with an anti-inflammatory and antibacterial bifunctional material holds great potential in clinical application.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección de Heridas , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Arginina/farmacología , Vendajes , Humanos , Hidrogeles/farmacología , Interleucina-6 , Norfloxacino , Penicilinas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Tetraciclina/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
19.
Bioresour Technol ; 360: 127569, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35788391

RESUMEN

Based on the prevalence of combined antibiotics and heavy metals contamination in the aquatic environment, this study utilized a microbial approach to achieve simultaneous removal of nitrate (NO3--N), tetracycline (TTC), and Pb(II). Zoogloea sp. FY6 could achieve an optimal NO3--N removal efficiency of 91.5% under C/N ratio of 2.0, at a pH of 6.3, and Fe(II) concentration of 20.23 mg L-1 based on response surface methodology. Additionally, strain FY6 was further found to achieve 89.9 and 81.7% removal of TTC and Pb(II) at 6 h under the optimal conditions. Finally, the results of Fluorescence excitation-emission matrix, X-ray diffraction, Fourier transform infrared spectrometer, and X-ray photoelectron spectroscopy further proved that the biologically formed nanoscale iron oxides and biological action jointly led to the removal of TTC and Pb(II). This study provided a theoretical basis for the application of microbially driven process to remove multi-pollutants in micro-polluted water bodies.


Asunto(s)
Contaminantes Químicos del Agua , Zoogloea , Adsorción , Antibacterianos , Hierro/química , Plomo , Nitratos , Óxidos de Nitrógeno , Oxidación-Reducción , Tetraciclina/farmacología , Contaminantes Químicos del Agua/química
20.
J Biomed Mater Res B Appl Biomater ; 110(11): 2452-2463, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35620882

RESUMEN

Re-osseointegration of an infected/contaminated dental implant poses major clinical challenges. We tested the hypothesis that the application of an antibiotic-releasing construct, combined with hard/soft tissue replacement, increases the efficacy of reconstructive therapy. We initially fabricated semi-flexible hybrid constructs of ß-TCP/PHBHHx, with tetracycline (TC) (TC amounts: 5%, 10%, and 15%). Thereafter, using in vitro assays, TC release profile, attachment to rat bone marrow-derived stem cells (rBMSCs) and their viability as well as anti-bacterial activity were determined. Thereafter, regenerative efficacies of the three hybrid constructs were assessed in a rat model of peri-implantitis induced by Aggregatibacter actinomycetemcomitans biofilm; control animals received ß-TCP/Bio-Gide and TC injection. Eight weeks later, maxillae were obtained for radiological, histological, and histomorphometric analyses of peri-implant tissues. Sulcus bleeding index was chronologically recorded. Serum cytokines levels of IL-6 and IL-1ß were also evaluated by enzyme-linked immunosorbent assay. Substantial amounts of tetracycline, from hybrid constructs, were released for 2 weeks. The medium containing the released tetracycline did not affect the adhesion or viability of rBMSCs; however, it inhibited the proliferation of A. actinomycetemcomitans. Osteogenesis and osseointegration were more marked for the 15% hybrid construct group than the other two groups. The height of attachment and infiltration of inflammatory cells within fibrous tissue was significantly reduced in the experimental groups than the control group. Our protocol resulted in re-osseointegration on a biofilm-contaminated implant. Thus, an antibiotic releasing inorganic/organic construct may offer a therapeutic option to suppress infection and promote guided tissue regeneration thereby serving as an integrated multi-layer substitute for both hard/soft tissues.


Asunto(s)
Implantes Dentales , Periimplantitis , Animales , Antibacterianos , Biopelículas , Fosfatos de Calcio , Citocinas , Interleucina-6 , Oseointegración , Periimplantitis/patología , Ratas , Tetraciclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA