Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Agric Food Chem ; 72(22): 12685-12695, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771136

RESUMEN

Halogenation plays a unique role in the design of agrochemicals. Enzymatic halogenation reactions have attracted great attention due to their excellent specificity and mild reaction conditions. S-adenosyl-l-methionine (SAM)-dependent halogenases mediate the nucleophilic attack of halide ions (X-) to SAM to produce 5'-XDA. However, only 11 SAM-dependent fluorinases and 3 chlorinases have been reported, highlighting the desire for additional halogenases. SAM-dependent hydroxide adenosyltransferase (HATase) has a similar reaction mechanism as halogenases but uses water as a substrate instead of halide ions. Here, we explored a HATase from the thermophile Thermotoga maritima MSB8 and transformed it into a halogenase. We identified a key dyad W8L/V71T for the halogenation reaction. We also obtained the best performing mutants for each halogenation reaction: M1, M2 and M4 for Cl-, Br- and I-, respectively. The M4 mutant retained the thermostability of HATase in the iodination reaction at 80 °C, which surpasses the natural halogenase SalL. QM/MM revealed that these mutants bind halide ions with more suitable angles for nucleophilic attack of C5' of SAM, thus conferring halogenation capabilities. Our work achieved the halide ion specificity of halogenases and generated thermostable halogenases for the first time, which provides new opportunities to expand the halogenase repertoire from hydroxylase.


Asunto(s)
Proteínas Bacterianas , Thermotoga maritima , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Thermotoga maritima/química , Halogenación , Especificidad por Sustrato , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Biocatálisis
2.
J Biol Chem ; 299(6): 104746, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37094698

RESUMEN

Enzymes from thermophilic organisms are interesting biocatalysts for a wide variety of applications in organic synthesis, biotechnology, and molecular biology. Next to an increased stability at elevated temperatures, they were described to show a wider substrate spectrum than their mesophilic counterparts. To identify thermostable biocatalysts for the synthesis of nucleotide analogs, we performed a database search on the carbohydrate and nucleotide metabolism of Thermotoga maritima. After expression and purification of 13 enzyme candidates involved in nucleotide synthesis, these enzymes were screened for their substrate scope. We found that the synthesis of 2'-deoxynucleoside 5'-monophosphates (dNMPs) and uridine 5'-monophosphate from nucleosides was catalyzed by the already known wide-spectrum thymidine kinase and the ribokinase. In contrast, no NMP-forming activity was detected for adenosine-specific kinase, uridine kinase, or nucleotidase. The NMP kinases (NMPKs) and the pyruvate-phosphate-dikinase of T. maritima exhibited a rather specific substrate spectrum for the phosphorylation of NMPs, while pyruvate kinase, acetate kinase, and three of the NMPKs showed a broad substrate scope with (2'-deoxy)nucleoside 5'-diphosphates as substrates. Based on these promising results, TmNMPKs were applied in enzymatic cascade reactions for nucleoside 5'-triphosphate synthesis using four modified pyrimidine nucleosides and four purine NMPs as substrates, and we determined that base- and sugar-modified substrates were accepted. In summary, besides the already reported TmTK, NMPKs of T. maritima were identified to be interesting enzyme candidates for the enzymatic production of modified nucleotides.


Asunto(s)
Nucleósido-Fosfato Quinasa , Thermotoga maritima , Nucleótidos/química , Fosforilación , Nucleósidos de Pirimidina/química , Especificidad por Sustrato , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Uridina Monofosfato/metabolismo , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo
3.
J Biol Chem ; 298(7): 102131, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700827

RESUMEN

Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.


Asunto(s)
Proteínas Hierro-Azufre , Thermotoga maritima , Coenzimas/metabolismo , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Níquel/metabolismo , Nucleótidos/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
4.
Appl Environ Microbiol ; 88(2): e0176321, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731048

RESUMEN

Membrane-spanning lipids are present in a wide variety of archaea, but they are rarely in bacteria. Nevertheless, the (hyper)thermophilic members of the order Thermotogales harbor tetraester, tetraether, and mixed ether/ester membrane-spanning lipids mostly composed of core lipids derived from diabolic acids, C30, C32, and C34 dicarboxylic acids with two adjacent mid-chain methyl substituents. Lipid analysis of Thermotoga maritima across growth phases revealed a decrease of the relative abundance of fatty acids together with an increase of diabolic acids with independence of growth temperature. We also identified isomers of C30 and C32 diabolic acids, i.e., dicarboxylic acids with only one methyl group at C-15. Their distribution suggests they are products of the condensation reaction but are preferably produced when the length of the acyl chains is not optimal. Compared with growth at the optimal temperature of 80°C, an increase of glycerol ether-derived lipids was observed at 55°C. Our analysis only detected diabolic acid-containing intact polar lipids with phosphoglycerol (PG) head groups. Considering these findings, we hypothesize a biosynthetic pathway for the synthesis of membrane-spanning lipids based on PG polar lipid formation, suggesting that the protein catalyzing this process is a membrane protein. We also identified, by genomic and protein domain analyses, a gene coding for a putative plasmalogen synthase homologue in T. maritima that is also present in other bacteria producing sn-1-alkyl ether lipids but not plasmalogens, suggesting it is involved in the conversion of the ester-to-ether bond in the diabolic acids bound in membrane-spanning lipids. IMPORTANCE Membrane-spanning lipids are unique compounds found in most archaeal membranes, but they are also present in specific bacterial groups like the Thermotogales. The synthesis and physiological role of membrane-spanning lipids in bacteria represent an evolutionary and biochemical open question that points to the differentiation of the membrane lipid composition. Understanding the formation of membrane-spanning lipids is crucial to solving this question and identifying the enzymatic and biochemical mechanism performing this procedure. In the present work, we found changes at the core lipid level, and we propose that the growth phase drives the biosynthesis of these lipids rather than temperature. Our results identified physiological conditions influencing the membrane-spanning lipid biosynthetic process, which can further clarify the pathway leading to the biosynthesis of these compounds.


Asunto(s)
Lípidos de la Membrana , Thermotoga maritima , Ácidos Dicarboxílicos , Éter , Éteres , Lípidos de la Membrana/metabolismo , Temperatura , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
5.
J Mol Biol ; 432(16): 4762-4771, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32592697

RESUMEN

Reverse gyrase is a unique type I topoisomerase that catalyzes the introduction of positive supercoils into DNA in an ATP-dependent reaction. Supercoiling is the result of a functional cooperation of the N-terminal helicase domain with the C-terminal topoisomerase domain. The helicase domain is a nucleotide-dependent conformational switch that alternates between open and closed states with different affinities for single- and double-stranded DNA. The isolated helicase domain as well as full-length reverse gyrase can transiently unwind double-stranded regions in an ATP-dependent reaction. The latch region of reverse gyrase, an insertion into the helicase domain with little conservation in sequence and length, has been proposed to coordinate events in the helicase domain with strand passage by the topoisomerase domain. Latch deletions lead to a reduction in or complete loss of supercoiling activity. Here we show that the latch consists of two functional parts, a globular domain that is dispensable for DNA supercoiling and a ß-hairpin that connects the globular domain to the helicase domain and is required for supercoiling activity. The ß-hairpin thus constitutes a minimal latch that couples ATP-dependent processes in the helicase domain to DNA processing by the topoisomerase domain.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/metabolismo , Thermotoga maritima/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN-Topoisomerasas de Tipo I/genética , ADN Bacteriano/metabolismo , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Eliminación de Secuencia , Thermotoga maritima/química , Thermotoga maritima/genética
6.
RNA ; 26(9): 1094-1103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385138

RESUMEN

N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.


Asunto(s)
Adenosina/análogos & derivados , Vías Biosintéticas/genética , Nucleósidos/genética , ARN de Transferencia/genética , Adenosina/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Aminoácidos/genética , Dominio Catalítico/genética , Escherichia coli/genética , Conformación Proteica , Especificidad por Sustrato/genética , Thermotoga maritima/genética , Treonina/genética
7.
Biomolecules ; 10(5)2020 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456184

RESUMEN

Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacumL.) overexpressing thermostable ß-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce ß-glucosidase for lignocellulose conversion.


Asunto(s)
Proteínas Bacterianas/genética , Biomasa , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , beta-Glucosidasa/genética , Proteínas Bacterianas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Azúcares/metabolismo , Thermotoga maritima/genética , Termotolerancia , Nicotiana/crecimiento & desarrollo , Regulación hacia Arriba , beta-Glucosidasa/metabolismo
8.
Protein Expr Purif ; 173: 105634, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32325232

RESUMEN

Endoglucanase EG12B from Thermotoga maritima is a thermophilic cellulase that has great potential for industrial applications. Here, to enable the selective purification of EG12B in a simple and efficient manner, an elastin-like polypeptide (ELP), which acts as a thermally responsive polypeptide, was fused with EG12B to enable its inverse phase transition cycling (ITC). A small gene library comprising ELPs from ELP5 to ELP50 was constructed using recursive directional ligation by plasmid reconstruction. ELP50 was added to the C-terminus of EG12B as a fusion tag to obtain the expression vector pET28-EG12B-ELP50, which was transformed into Escherichia coli BL21 (DE3) to enable the expression of fusion protein via IPTG induction. Gray scanning analysis revealed that the EG12B-ELP50 expression level was up to about 35% of the total cellular proteins. After three rounds of ITC, 8.14 mg of EG12B-ELP50 was obtained from 500-mL lysogeny broth culture medium. The recovery rate and purification fold of EG12B-ELP50 purified by ITC reached 78.1% and 11.8, respectively. The cellulase activity assay showed that EG12B-ELP50 had a better thermostability, higher optimal temperature, and longer half-life than those of free EG12B. Overall, our results suggested that ELP50 could be used as a favorable fusion tag, providing a rapid, simple, and inexpensive strategy for non-chromatographic target-protein purification.


Asunto(s)
Proteínas Bacterianas , Celulasa , Elastina , Proteínas Recombinantes de Fusión , Thermotoga maritima/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Celulasa/biosíntesis , Celulasa/química , Celulasa/genética , Celulasa/aislamiento & purificación , Elastina/biosíntesis , Elastina/química , Elastina/genética , Elastina/aislamiento & purificación , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Thermotoga maritima/enzimología
9.
Proc Natl Acad Sci U S A ; 116(30): 14955-14960, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31270241

RESUMEN

Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to ß-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable µ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O22-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Proteínas de Unión a Hierro/metabolismo , Oxidorreductasas/metabolismo , Transducción de Señal , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Histidina Quinasa/metabolismo , Hierro/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Oxígeno/metabolismo , Filogenia , Unión Proteica , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Treponema denticola/enzimología , Treponema denticola/genética
10.
Mol Biotechnol ; 61(6): 432-441, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30963480

RESUMEN

D-Allulose is a rare monosaccharide that exists in extremely small quantities in nature, and it is also hard to prepare at a large scale via chemical or enzyme synthetic route due to low conversion and downstream separation complexity. Using D-psicose epimerase and L-rhamnulose kinase, a method enabling high conversion of D-allulose from D-fructose without the need for a tedious isomer separation step was established recently. However, this method requires expensive ATP to facilitate the reaction. In the present study, an ATP regenerate system was developed coupling with polyphosphate kinase. In our optimized reaction with purified enzymes, the conversion rate of 99% D-fructose was achieved at the concentrations of 2 mM ATP, 5 mM polyphosphate, 20 mM D-fructose, and 20 mM Mg2+ when incubated at 50 °C and at pH 7.5. ATP usage can be reduced to 10% of the theoretical amount compared to that without the ATP regeneration system. A fed-batch mode was also studied to minimize the inhibitory effect of polyphosphate. The biosynthetic system reported here offers a potential and promising platform for the conversion of D-fructose into D-allulose at reduced ATP cost.


Asunto(s)
Adenosina Trifosfato/metabolismo , Carbohidrato Epimerasas/metabolismo , Fructosa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Biotransformación , Carbohidrato Epimerasas/genética , Cationes Bivalentes , Clonación Molecular , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosa/biosíntesis , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Magnesio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Polifosfatos/metabolismo , Proteínas Recombinantes de Fusión/genética , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
11.
Nucleic Acids Res ; 47(8): 4136-4152, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30892613

RESUMEN

The UvrA2 dimer finds lesions in DNA and initiates nucleotide excision repair. Each UvrA monomer contains two essential ATPase sites: proximal (P) and distal (D). The manner whereby their activities enable UvrA2 damage sensing and response remains to be clarified. We report three key findings from the first pre-steady state kinetic analysis of each site. Absent DNA, a P2ATP-D2ADP species accumulates when the low-affinity proximal sites bind ATP and enable rapid ATP hydrolysis and phosphate release by the high-affinity distal sites, and ADP release limits catalytic turnover. Native DNA stimulates ATP hydrolysis by all four sites, causing UvrA2 to transition through a different species, P2ADP-D2ADP. Lesion-containing DNA changes the mechanism again, suppressing ATP hydrolysis by the proximal sites while distal sites cycle through hydrolysis and ADP release, to populate proximal ATP-bound species, P2ATP-Dempty and P2ATP-D2ATP. Thus, damaged and native DNA trigger distinct ATPase site activities, which could explain why UvrA2 forms stable complexes with UvrB on damaged DNA compared with weaker, more dynamic complexes on native DNA. Such specific coupling between the DNA substrate and the ATPase mechanism of each site provides new insights into how UvrA2 utilizes ATP for lesion search, recognition and repair.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Proteínas Bacterianas/química , Reparación del ADN , ADN Bacteriano/química , Endodesoxirribonucleasas/química , Proteínas de Escherichia coli/química , Geobacillus stearothermophilus/enzimología , ortoaminobenzoatos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Daño del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Cinética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica , Thermotoga maritima/química , Thermotoga maritima/enzimología , Thermotoga maritima/genética , ortoaminobenzoatos/metabolismo
12.
Protein Sci ; 28(1): 267-282, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394621

RESUMEN

MiaB is a member of the methylthiotransferase subclass of the radical S-adenosylmethionine (SAM) superfamily of enzymes, catalyzing the methylthiolation of C2 of adenosines bearing an N6 -isopentenyl (i6 A) group found at position 37 in several tRNAs to afford 2-methylthio-N6 -(isopentenyl)adenosine (ms2 i6 A). MiaB uses a reduced [4Fe-4S]+ cluster to catalyze a reductive cleavage of SAM to generate a 5'-deoxyadenosyl 5'-radical (5'-dA•)-a required intermediate in its reaction-as well as an additional [4Fe-4S]2+ auxiliary cluster. In Escherichia coli and many other organisms, re-reduction of the [4Fe-4S]2+ cluster to the [4Fe-4S]+ state is accomplished by the flavodoxin reducing system. Most mechanistic studies of MiaBs have been carried out on the enzyme from Thermotoga maritima (Tm), which lacks the flavodoxin reducing system, and which is not activated by E. coli flavodoxin. However, the genome of this organism encodes five ferredoxins (TM0927, TM1175, TM1289, TM1533, and TM1815), each of which might donate the requisite electron to MiaB and perhaps to other radical SAM enzymes. The genes encoding each of these ferredoxins were cloned, and the associated proteins were isolated and shown to support turnover by Tm MiaB. In addition, TM1639, the ferredoxin-NADP+ oxidoreductase subunit α (NfnA) from Tm was overproduced and isolated and shown to provide electrons to the Tm ferredoxins during Tm MiaB turnover. The resulting reactions demonstrate improved coupling between formation of the 5'-dA• and ms2 i6 A production, indicating that only one hydrogen atom abstraction is required for the reaction.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Sulfurtransferasas/metabolismo , Thermotoga maritima/enzimología , Transporte de Electrón/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ferredoxinas/genética , Ferredoxinas/metabolismo , Sulfurtransferasas/genética , Thermotoga maritima/genética
13.
J Mol Biol ; 430(22): 4592-4602, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30044948

RESUMEN

AAA+ proteases are essential players in cellular pathways of protein degradation. Elucidating their conformational behavior is key for understanding their reaction mechanism and, importantly, for elaborating our understanding of mutation-induced protease deficiencies. Here, we study the structural dynamics of the Thermotoga maritima AAA+ hexameric ring metalloprotease FtsH (TmFtsH). Using a single-molecule Förster resonance energy transfer approach to monitor ATPase and protease inter-domain conformational changes in real time, we show that TmFtsH-even in the absence of nucleotide-is a highly dynamic protease undergoing sequential transitions between five states on the second timescale. Addition of ATP does not influence the number of states or change the timescale of domain motions but affects the state occupancy distribution leading to an inter-domain compaction. These findings suggest that thermal energy, but not chemical energy, provides the major driving force for conformational switching, while ATP, through a state reequilibration, introduces directionality into this process. The TmFtsH A359V mutation, a homolog of the human pathogenic A510V mutation of paraplegin (SPG7) causing hereditary spastic paraplegia, does not affect the dynamic behavior of the protease but impairs the ATP-coupled domain compaction and, thus, may account for protease malfunctioning and pathogenesis in hereditary spastic paraplegia.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Thermotoga maritima/enzimología , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Bacterianas/química , Dominio Catalítico , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Imagen Individual de Molécula , Termodinámica , Thermotoga maritima/genética
14.
J Biotechnol ; 283: 43-50, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29972763

RESUMEN

In past years, lots of research has been focused on the indigenous bacteria and their mechanisms, which help in enhanced oil recovery. Most of the oil wells in Indian subcontinent have temperature higher than 60 °C. Also, the role of methanogenic consortia from high temperature petroleum reservoir for enhanced oil recovery (EOR) has not been explored much. Hence, in the present study methanogens isolated from thermophilic oil wells (70 °C) were evaluated for enhanced oil recovery. Methane gas is produced by methanogens, which helps in oil recovery from depleted oil wells through reservoir re-pressurization and also can be recovered from reservoir along with crude oil as alternative energy source. Therefore, in this study indigenous methanogenic consortium (TERIL146) was enriched from high temperature oil reservoir showing (12 mmol/l) gas production along with other metabolites. Sequencing analysis revealed the presence of Methanothermobacter sp., Thermoanaerobacter sp., Gelria sp. and Thermotoga sp. in the consortium. Furthermore, the developed indigenous consortium TERIL146 showed 8.3% incremental oil recovery in sandpack assay. The present study demonstrates successful recovery of both oil and energy (gas) by the developed indigenous methanogenic consortium TERIL146 for potential application in thermophilic depleted oil wells of Indian subcontinent.


Asunto(s)
Bacterias/aislamiento & purificación , Methanobacteriaceae/aislamiento & purificación , Consorcios Microbianos , Yacimiento de Petróleo y Gas/microbiología , Bacterias/clasificación , Bacterias/genética , Calor , Microbiología Industrial , Metano/metabolismo , Methanobacteriaceae/clasificación , Methanobacteriaceae/genética , Filogenia , Análisis de Secuencia de ADN , Thermoanaerobacter/clasificación , Thermoanaerobacter/genética , Thermoanaerobacter/aislamiento & purificación , Thermotoga maritima/clasificación , Thermotoga maritima/genética , Thermotoga maritima/aislamiento & purificación
15.
Nucleic Acids Res ; 46(3): 1395-1411, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29309633

RESUMEN

The universal N(6)-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs is central to translational fidelity. In bacteria, t6A biosynthesis is catalyzed by the proteins TsaB, TsaC/TsaC2, TsaD and TsaE. Despite intense research, the molecular mechanisms underlying t6A biosynthesis are poorly understood. Here, we report biochemical and biophysical studies of the t6A biosynthesis system from Thermotoga maritima. Small angle X-ray scattering analysis reveals a symmetric 2:2 stoichiometric complex of TsaB and TsaD (TsaB2D2), as well as 2:2:2 complex (TsaB2D2E2), in which TsaB acts as a dimerization module, similar to the role of Pcc1 in the archaeal system. The TsaB2D2 complex is the minimal platform for the binding of one tRNA molecule, which can then accommodate a single TsaE subunit. Kinetic data demonstrate that TsaB2D2 alone, and a TsaB2D2E1 complex with TsaE mutants deficient in adenosine triphosphatase (ATPase) activity, can catalyze only a single cycle of t6A synthesis, while gel shift experiments provide evidence that the role of TsaE-catalyzed ATP hydrolysis occurs after the release of product tRNA. Based on these results, we propose a model for t6A biosynthesis in bacteria.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/genética , Ligasas/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Thermotoga maritima/enzimología , Adenosina/biosíntesis , Adenosina/química , Adenosina/genética , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Codón , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Thermotoga maritima/genética
16.
Sci Rep ; 7(1): 7627, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790446

RESUMEN

Proper cell division at the mid-site of Gram-negative bacteria reflects stringent regulation by the min system (MinC, MinD and MinE). Herein we report crystal structure of the C-terminal domain of MinC from Escherichia coli (EcMinCCTD). The MinCCTD beta helical domain is engaged in a tight homodimer, similar to Thermotoga maritima MinCCTD (TmMinCCTD). However, both EcMinCCTD and TmMinCCTD lack an α-helix (helix3) at their C-terminal tail, in comparison to Aquifex aerolicu MinCCTD (AaMinCCTD) which forms an extra interaction interface with MinD. To understand the role of this extra binding element in MinC/MinD interactions, we fused this helix (Aahelix3) to the C-terminus of EcMinC and examined its effect on cell morphology and cell growth. Our results revealed that Aahelix3 impaired normal cell division in vivo. Furthermore, results of a co-pelleting assay and binding free energy calculation suggested that Aahelix3 plays an essential role in AaMinCD complex formation, under the circumstance of lacking MinE in A. aerolicu. Combining these results with sequence analysis of MinC and MinD in different organisms, we propose an evolutionary relationship to rationalize different mechanisms in cell division positioning in various organisms.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , División Celular , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de la Membrana/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Thermotoga maritima/citología , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
17.
World J Microbiol Biotechnol ; 33(9): 166, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28822027

RESUMEN

Fusion protein construction often requires peptide linkers for prolonged conformation, extended stability and enzyme activity. In this study a series of fusion between Thermotoga maritima lipase Tm1350 and Bacillus subtillis coat protein CotB, comprising of several peptide linkers, with different length, flexibility and orientations were constructed. Effects of temperature, pH and chemicals were examined, on the activity of displayed enzyme. The fusion protein with longer flexible linkers L9 [(GGGGS)4] and L7 (GGGGS-GGGGS-EAAAK-EAAAK-GGGGS-GGGGS) possess 1.29 and 1.16-fold higher activity than the original, under optimum temperature and pH respectively. Moreover, spore surface displaying Tm1350 with L3 (EAAAK-GGGGS) and L9 ((GGGGS)4) showed extended thermostably, maintaining 1.40 and 1.35-fold higher activity than the original respectively, at 80 °C after 5 h of incubation. The enzyme activity of linkers with different orientation, including L5, L6 and L7 was determined, where L7 maintained 1.05 and 1.27-fold higher activity than L5 and L6. Effect of 0.1% proteinase K, bromelain, 20% ethanol and 30% methanol was investigated. Linkers with appropriate Glycine residues (flexible) showed higher activity than Alanine residues (rigid). The activity of the displayed enzyme can be improved by maintaining orientation and flexibility of peptide linkers, to evaluate high activity and stability in industrial processes.


Asunto(s)
Proteínas Bacterianas/genética , Lipasa/genética , Ingeniería de Proteínas/métodos , Thermotoga maritima/enzimología , Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Lipasa/metabolismo , Péptidos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Esporas Bacterianas , Temperatura , Thermotoga maritima/genética
18.
Appl Environ Microbiol ; 83(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28687653

RESUMEN

Thermotoga maritima is a hyperthermophilic anaerobic bacterium that produces molecular hydrogen (H2) by fermentation. It catabolizes a broad range of carbohydrates through the action of diverse ABC transporters. However, in T. maritima and related species, highly similar genes with ambiguous annotation obscure a precise understanding of genome function. In T. maritima, three putative malK genes, all annotated as ATPase subunits, exhibited high identity to each other. To distinguish between these genes, malK disruption mutants were constructed by gene replacement, and the resulting mutant cell lines were characterized. Only a disruption of malK3 produced a defect in maltose catabolism. To verify that the mutant phenotype arose specifically from malK3 inactivation, the malK3 mutation was repaired by recombination, and maltose catabolism was restored. This study demonstrates the importance of a maltose ABC-type transporter and its relationship to sugar metabolism in T. maritimaIMPORTANCE The application and further development of a genetic system was used here to investigate gene paralogs in the hyperthermophile Thermotoga maritima The occurrence of three ABC transporter ATPase subunits all annotated as malK was evaluated using a combination of genetic and bioinformatic approaches. The results clarify the role of only one malK gene in maltose catabolism in a nonmodel organism noted for fermentative hydrogen production.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Maltosa/metabolismo , Thermotoga maritima/enzimología , Adenosina Trifosfatasas/genética , Anaerobiosis , Proteínas Bacterianas/genética , Transporte Biológico , Calor , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(28): 7355-7360, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655838

RESUMEN

Sulfur is present in several nucleosides within tRNAs. In particular, thiolation of the universally conserved methyl-uridine at position 54 stabilizes tRNAs from thermophilic bacteria and hyperthermophilic archaea and is required for growth at high temperature. The simple nonredox substitution of the C2-uridine carbonyl oxygen by sulfur is catalyzed by tRNA thiouridine synthetases called TtuA. Spectroscopic, enzymatic, and structural studies indicate that TtuA carries a catalytically essential [4Fe-4S] cluster and requires ATP for activity. A series of crystal structures shows that (i) the cluster is ligated by only three cysteines that are fully conserved, allowing the fourth unique iron to bind a small ligand, such as exogenous sulfide, and (ii) the ATP binding site, localized thanks to a protein-bound AMP molecule, a reaction product, is adjacent to the cluster. A mechanism for tRNA sulfuration is suggested, in which the unique iron of the catalytic cluster serves to bind exogenous sulfide, thus acting as a sulfur carrier.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , Compuestos de Sulfhidrilo/química , Azufre/química , Sitios de Unión , Catálisis , Clonación Molecular , Genoma Bacteriano , Proteínas Hierro-Azufre/química , Modelos Biológicos , Familia de Multigenes , Oxidación-Reducción , ARN de Transferencia/genética , Espectrofotometría Ultravioleta , Sulfurtransferasas/genética , Thermotoga maritima/genética
20.
Mol Microbiol ; 105(4): 508-524, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28640457

RESUMEN

The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine ß-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining.


Asunto(s)
Enzimas/genética , Liasas/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Escherichia coli/genética , Genoma/genética , Genoma Bacteriano/genética , Liasas/metabolismo , Redes y Vías Metabólicas , Thermotoga maritima/genética , Wolbachia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA