Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000436

RESUMEN

A range of hybrid molecules incorporating the ciminalum moiety in the thiazolidinone ring demonstrate significant anticancer and antimicrobial properties. Therefore, the aim of our study was to evaluate the properties and mechanism of action of two 4-thiazolidinone-based derivatives, i.e., 3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}propanoic acid (Les-45) and 5-[2-chloro-3-(4-nitrophenyl)-2-propenylidene]-2-(3-hydroxyphenylamino)thiazol-4(5H)-one (Les-247). In our study, we analyzed the impact of Les-45 and Les-247 on metabolic activity, caspase-3 activity, and the expression of genes and proteins related to inflammatory and antioxidant defenses and cytoskeleton rearrangement in healthy human fibroblasts (BJ) and a human lung carcinoma cell line (A549). The cells were exposed to increasing concentrations (1 nM to 100 µM) of the studied compounds for 24 h and 48 h. A decrease in the metabolic activity in the BJ and A549 cell lines was induced by both compounds at a concentration range from 10 to 100 µM. Both compounds decreased the mRNA expression of NRF2 (nuclear factor erythroid 2-related factor 2) and ß-actin in the BJ cells. Interestingly, a significant decrease in the level of NF-κB gene and protein expression was detected in the BJ cell line, suggesting a direct impact of the studied compounds on the inhibition of inflammation. However, more studies are needed due to the ability of Les-45 and Les-247 to interfere with the tubulin/actin cytoskeleton, i.e., a critical system existing in eukaryotic cells.


Asunto(s)
FN-kappa B , Transducción de Señal , Tiazolidinas , Humanos , Tiazolidinas/farmacología , Tiazolidinas/química , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Células A549 , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química
2.
Methods Enzymol ; 698: 169-194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38886031

RESUMEN

Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.


Asunto(s)
Péptidos , Tiazolidinas , Tiazolidinas/química , Péptidos/química , Dicetopiperazinas/química
3.
Drug Res (Stuttg) ; 74(5): 227-240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830371

RESUMEN

PURPOSE: Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS: The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS: The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION: Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.


Asunto(s)
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Células A549 , Tiazolidinas/farmacología , Tiazolidinas/química , Tiazolidinas/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos
4.
Org Lett ; 26(23): 5021-5026, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38842216

RESUMEN

We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.


Asunto(s)
Oxidación-Reducción , Péptidos , Tiazolidinas , Tiazolidinas/química , Tiazolidinas/síntesis química , Estructura Molecular , Péptidos/química , Péptidos/síntesis química , Hidrazinas/química , Prolina/química , Ésteres/química , Compuestos de Sulfhidrilo/química
5.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930952

RESUMEN

Based on the fact that substances with a ß-phenyl-α,ß-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1-8 were prepared as potential tyrosinase inhibitors. Four analogs (1-3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.


Asunto(s)
Agaricales , Antioxidantes , Inhibidores Enzimáticos , Melaninas , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Agaricales/enzimología , Animales , Antioxidantes/farmacología , Antioxidantes/química , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Melaninas/antagonistas & inhibidores , Melaninas/biosíntesis , Tiazolidinas/química , Tiazolidinas/farmacología , Línea Celular Tumoral , Cinética , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/química , Pironas
6.
Future Med Chem ; 16(8): 769-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578146

RESUMEN

Aim: Breast cancer has been a leading cause of mortality among women worldwide in recent years. Targeting the lysophosphatidic acid (LPA)-LPA1 pathway using small molecules could improve breast cancer therapy. Materials & methods: Thiazolidin-4-ones were developed and tested on MCF-7 cancer cells, and active compounds were analyzed for their effects on apoptosis, migration angiogenesis and LPA1 protein and gene expression. Results & conclusion: Compounds TZ-4 and TZ-6 effectively reduced the migration of MCF-7 cells, and induced apoptosis. TZ-4, TZ-6, TZ-8 and TZ-14 significantly reduced the LPA1 protein, LPA1 and angiogenesis gene expression in treated MCF-7 cells. Molecular docking and molecular dynamic simulation studies reveal the ligand interactions and stability of the LPA1-ligand complex. Developed thiazolidin-4-ones showed great potential as an LPA1-targeted approach to combating breast cancer.


Breast cancer is a major cause of death for women worldwide. Using small molecules to target the lysophosphatidic acid (LPA)­LPA1 pathway could improve breast cancer treatment. We tested a type of molecule called thiazolidin-4-ones on breast cancer cells in the lab. We looked at how these molecules affected cell death, movement, blood vessel growth and the activity of the LPA1 gene and protein. Some of these molecules, such as TZ-4 and TZ-6, reduced the movement of cancer cells and caused them to die. They also decreased the levels of LPA1 protein and gene activity in the cells. We used computer simulations to see how these molecules interacted with the LPA1 protein. Our findings suggest that thiazolidin-4-ones could be a promising treatment for breast cancer by targeting LPA1.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Diseño de Fármacos , Receptores del Ácido Lisofosfatídico , Tiazolidinas , Humanos , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Tiazolidinas/farmacología , Tiazolidinas/química , Tiazolidinas/síntesis química , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Movimiento Celular/efectos de los fármacos
7.
Chem Biodivers ; 21(7): e202301870, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538544

RESUMEN

New sets of functionalized thiazolidinone and thiadiazole derivatives were synthesized, and their cytotoxicity was evaluated on HepG2, MCF-7, HTC-116, and WI38 cells. The synthetic approach is based on the preparation of 4-(4-acetamidophenyl)thiosemicarbazide (4) and their thiosemicarbazones 5 a-e, which are converted to the corresponding thiazoldin-4-one compounds 6 a-e upon cyclization with ethyl bromoacetate. The thiadiazole compounds 9 and 12 were obtained by reacting 4-(4-acetamidophenyl)thiosemicarbazide with isothiocyanates and/or ethyl 2-cyano-3,3-bis(methylthio)acrylate, respectively. The thiazolidinone compounds 6 c and 6 e exhibited strong cytotoxicity against breast cancer cells, with an IC50 (6.70±0.5 µM) and IC50 (7.51±0.8 µM), respectively, very close to that of doxorubicin (IC50: 4.17±0.2 µM). In addition, the anti-cancer properties of the tested thiazolidinone and thiadiazole scaffolds were further explored by the molecular docking program (MOE)-(PDB Code-1DLS). Compounds 5 d, 5 e, 6 d, 6 e, and 7 have the best binding affinity, ranging from -8.5386 kcal.mol-1 to -8.2830 kcal.mol-1.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Tiadiazoles , Tiazolidinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Tiadiazoles/química , Tiadiazoles/farmacología , Tiadiazoles/síntesis química , Tiazolidinas/química , Tiazolidinas/farmacología , Tiazolidinas/síntesis química , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga
8.
Chem Res Toxicol ; 37(2): 395-406, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38181204

RESUMEN

The reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing N-terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA. NMR and MALDI-TOF-MS analyses provided evidence that the reaction generated a thiazolidine product. Conversion of an AP site to a thiazolidine-AP adduct protected against the rapid cleavage normally induced at AP sites by the endonuclease action of the enzyme APE1 and the AP-lyase activity of the biogenic amine spermine. In the presence of excess 1,2-aminothiols, the thiazolidine-AP adducts underwent slow strand cleavage via a ß-lyase reaction that generated products with 1,2-aminothiol-modified sugar residues on the 3'-end of the strand break. In the absence of excess 1,2-aminothiols, the thiazolidine-AP adducts dissociated to release the parent AP-containing oligonucleotide. The properties of the thiazolidine-AP adducts described here mirror critical properties of SRAP proteins HMCES and YedK that capture AP sites in single-stranded regions of cellular DNA and protect them from cleavage.


Asunto(s)
Cisteína/análogos & derivados , Aductos de ADN , Cisteamina , Reparación del ADN , Tiazolidinas/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/química , Péptidos , Aldehídos , Daño del ADN
9.
Protein Sci ; 32(6): e4650, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37132632

RESUMEN

(2R)-4-thiaproline (Thp) is an analog of proline, replacing Cγ in the pyrrolidine ring with sulfur. Its thiazolidine ring easily interconverts between endo and exo puckers due to a small energy barrier, which leads to destabilize polyproline helices. Collagen, composed of three polyproline II helices, mainly consists of X-Y-Gly triplets, where X is often proline and Y is frequently (2S,4R)-hydroxyproline. In this study, we incorporated Thp into either position-X or position-Y to investigate the consequences of such a replacement on the triple helix. Circular dichroism and differential scanning calorimetry analyses showed that the Thp-containing collagen-mimetic peptides (CMPs) can fold into stable triple helices, in which the substitution at position-Y exhibits a larger destabilization effect. Additionally, we also prepared the derivative peptides by oxidizing Thp in the peptide to N-formyl-cysteine or S,S-dioxide Thp. The results showed that the oxidized derivatives at position-X only slightly affect collagen stability, but those at position-Y induce a large destabilization effect. The consequences of incorporating Thp and its oxidized derivatives into CMPs are position dependent. Computational results suggested that the ease of interconversion between exo and endo puckers for Thp and the twist conformation of S,S-dioxide Thp may cause the destabilization effect at position-Y. We have revealed new insights into the impacts of Thp and its oxidized derivatives on collagen and demonstrated that Thp can be used to design collagen-related biomaterials.


Asunto(s)
Biomimética , Colágeno , Tiazolidinas , Tiazolidinas/química , Colágeno/síntesis química , Colágeno/química , Estabilidad Proteica , Termodinámica , Cinética
10.
Eur J Med Chem ; 246: 114909, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36508971

RESUMEN

The discovery of a new class of extracellular-signal-regulated kinase (ERK) inhibitors has been achieved via developing novel 2-imino-5-arylidene-thiazolidine analogues. A novel synthetic method employing a solid support-mediated reaction was used to construct the targeted thiazolidines through a cascade reaction with good yields. The chemical and physical stability of the new thiazolidine library has successfully been achieved by blocking the labile C5-position to aerobic oxidation. A cell viability study was performed using esophageal squamous cell carcinoma cell lines (KYSE-30 and KYSE-150) and non-tumorous esophageal epithelial cell lines (HET-1A and NES-G4T) through utilization of an MTT assay, revealing that (Z)-5-((Z)-4-bromobenzylidene)-N-(4-methoxy-2-nitrophenyl)-4,4-dimethylthiazolidin-2-imine (6g) was the best compound among the synthesized library in terms of selectivity. DAPI staining experiments were performed to visualize the morphological changes and to investigate the apoptotic activity. Moreover, western blots were used to probe the mechanism/pathway behind the observed activity/selectivity of thiazolidine 6g which established selective inhibition of phosphorylation in the ERK pathway. Molecular modeling techniques have been utilized to confirm the observed activity. A molecular docking study revealed similar binding interactions between the synthesized thiazolidines and reported co-crystalized inhibitors with ERK proteins. Thus, the present study provides a starting point for the development of interesting bioactive 2-imino-5-arylidene-thiazolidines.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Tiazolidinas/farmacología , Tiazolidinas/química , Neoplasias Esofágicas/patología , Sistema de Señalización de MAP Quinasas , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Proliferación Celular
11.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361924

RESUMEN

Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Tiazolidinas/farmacología , Tiazolidinas/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Química Farmacéutica
12.
Angew Chem Int Ed Engl ; 61(39): e202206240, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35881031

RESUMEN

Strategies for one-pot peptide ligation enable chemists to access synthetic proteins at a high yield in a short time. Herein, we report a novel one-pot multi-segments ligation strategy using N-terminal thiazolidine (Thz) peptide and a newly designed formaldehyde scavenger. Among the designed 2-aminobenzamide-based aldehyde scavengers, 2-amino-5-methoxy-N',N'-dimethylbenzohydrazide (AMDBH) can remarkably convert Thz into unprotected cysteine at pH 4.0. Furthermore, AMDBH degrades Thz at a considerably low rate at pH 7.5, and thioester degradation caused by this scavenger is negligible. As a result, we have developed an efficient one-pot peptide ligation strategy by simply repetitively changing the pH with AMDBH. Finally, we synthesize mono-ubiquitinated histone H2A.Z (209 amino acids) via AMDBH-mediated one-pot four-segment peptide ligation in good yield.


Asunto(s)
Cisteína , Histonas , Aldehídos , Aminoácidos , Cisteína/química , Formaldehído , Péptidos/química , Tiazolidinas/química
13.
J Biol Chem ; 298(9): 102249, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835215

RESUMEN

Isopenicillin N synthase (IPNS) catalyzes formation of the ß-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS-Fe(II)-ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron-electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.


Asunto(s)
Oxidorreductasas , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Ferrosos/química , Hierro/química , Óxido Nítrico/química , Oxidorreductasas/química , Oxidorreductasas/genética , Oxígeno/química , Oxigenasas/metabolismo , Penicilinas/biosíntesis , Penicilinas/química , Conformación Proteica , Especificidad por Sustrato , Tiazolidinas/química
14.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164106

RESUMEN

An efficient surface-mediated synthetic method to facilitate access to a novel class of thiazolidines is described. The rationale behind the design of the targeted thiazolidines was to prepare stable thiazolidine analogues and evaluate their anti-proliferative activity against a breast cancer cell line (MCF7). Most of the synthesized analogues exhibited increased potency ranging from 2-15-fold higher compared to the standard reference, cisplatin. The most active thiazolidines contain a halogenated or electron withdrawing group attached to the N-phenyl ring of exocyclic 2-imino group. However, combination of the two substituents did not enhance the activity. The anti-proliferative activity was measured in terms of IC50 values using an MTT assay.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Tiazolidinas , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Células MCF-7 , Relación Estructura-Actividad , Tiazolidinas/síntesis química , Tiazolidinas/química , Tiazolidinas/farmacología
15.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164157

RESUMEN

Heterocycles are commonly known for their unique features, e.g., antibacterial or anticancer properties. Although many synthetic heterocycles, such as 4-thiazolidinone (4-TZD), have been synthesized, their potential applications have not yet been fully investigated. However, many researchers have reported relevant results that can be a basis for the search for new potential drugs. Therefore, the aim of this study was to evaluate the cytotoxic, cytostatic, and antibacterial effects of certain 4-thiazolidinone-based derivatives, Les-3166, Les-5935, Les-6009, and Les-6166, on human fibroblasts (BJ), neuroblastoma (SH-SY5Y), epithelial lung carcinoma (A549), and colorectal adenocarcinoma (CACO-2) cell lines in vitro. All tested compounds applied in a concentration range from 10 to 100 µM were able to decrease metabolic activity in the BJ, A549, and SH-SY5Y cell lines. However, the action of Les-3166 was mainly based on the ROS-independent pathway, similarly to Les-6009. In turn, Les-5935 and Les-6166 were able to promote ROS production in BJ, A549, and SH-SY5Y cells, compared to the control. Les-3166, Les-6009, and Les-6166 significantly increased the caspase-3 activity, especially at the concentrations of 50 µM and 100 µM. However, Les-5935 did not induce apoptosis. Only Les-5935 showed a minor cytostatic effect on SH-SY5Y cells. Additionally, the antibacterial properties of the tested compounds against P. aeruginosa bacterial biofilm can be ranked as follows: Les-3166 > Les-5935 > Les-6009. Les-6166 did not show any anti-biofilm activity. In summary, the study showed that Les-5935, Les-6009, and Les-6166 were characterized by anticancer properties, especially in the human lung cancer cell. In cases of BJ, SH-SY5Y, and CACO-2 cells the anticancer usage of such compounds is limited due to effect visible only at 50 and 100 µM.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Tiazolidinas/química , Tiazolidinas/farmacología , Células A549 , Apoptosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos
16.
J Am Chem Soc ; 144(2): 832-844, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985906

RESUMEN

Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Compuestos Bicíclicos con Puentes/química , Inhibidores Enzimáticos/química , Histona Acetiltransferasas/metabolismo , Hialuronoglucosaminidasa/metabolismo , Secuencia de Aminoácidos , Encéfalo/metabolismo , Compuestos Bicíclicos con Puentes/metabolismo , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/metabolismo , Histona Acetiltransferasas/antagonistas & inhibidores , Humanos , Hialuronoglucosaminidasa/antagonistas & inhibidores , Espectrometría de Masas , Péptidos/análisis , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Relación Estructura-Actividad , Tiazolidinas/química , Tiazolidinas/metabolismo , Cadena alfa de beta-Hexosaminidasa/antagonistas & inhibidores , Cadena alfa de beta-Hexosaminidasa/metabolismo
17.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056668

RESUMEN

Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Imidazolidinas/química , Isatina/farmacología , Neoplasias/tratamiento farmacológico , Tiazolidinas/química , Antineoplásicos/química , Proliferación Celular , Células HeLa , Humanos , Isatina/química , Células MCF-7 , Estructura Molecular , Neoplasias/patología , Relación Estructura-Actividad
18.
J Med Chem ; 65(3): 2174-2190, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089030

RESUMEN

The unique proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1 (Pin1) is reported to activate numerous cancer-driving pathways simultaneously, and aberrant Pin1 activation is present in many human cancers. Here, we identified a novel hit compound, ZL-Pin01, that covalently modified Pin1 at Cys113 with an half-maximal inhibitory concentration (IC50) of 1.33 ± 0.07 µM through screening an in-house library. Crystallographic study drove the process of structure-guided optimization and led to the potent inhibitor ZL-Pin13 with an IC50 of 0.067 ± 0.03 µM. We obtained four co-crystal structures of Pin1 complexed with inhibitors that elucidated the detailed binding mode of the derivatives with Pin1. Interestingly, the co-crystal of Pin1 with ZL-Pin13 obtained by co-crystallization revealed the conformational change of Gln129 induced by the inhibitor. Furthermore, ZL-Pin13 effectively inhibited the proliferation and downregulated the Pin1 substrates in MDA-MB-231 cells. Collectively, we developed a potent covalent inhibitor of Pin1, ZL-Pin13, which could be an effective probe for studying the functional roles of Pin1.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Relación Estructura-Actividad , Tiazolidinas/química , Tiazolidinas/metabolismo
19.
Eur J Med Chem ; 228: 114010, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34861640

RESUMEN

Due to unknown pathogenesis and unidentified drug target, no drug for the treatment of osteosarcoma (OS) has been launched to the market. Herein, thiazolidinone 1a was discovered as a hit compound by phenotypic screening with an in-house patrimonial collection of structural diversity. The following SAR (Structure-Activity Relationship) study affords the final water-soluble lead compound (R)-8i as a potential inhibitor for the proliferation of OS cells by the modulation of solubility of the compounds with remarkable cellular potency (IC50 = 21.9 nM for MNNG/HOS cells) and in vivo efficacy (52.9% inhibition OS growth in mice), as well as pharmacokinetic properties. (R)-8i also significantly suppresses OS cell migration in vitro and showed to be well-tolerated. Our preliminary investigation shows that the effects of (R)-8i are not dependent on p53 and myoferlin (MYOF). These results suggest that (R)-8i might be a potential drug candidate for OS treatment.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Piridinas/farmacología , Tiazolidinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Osteosarcoma/patología , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Tiazolidinas/síntesis química , Tiazolidinas/química
20.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768964

RESUMEN

Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.


Asunto(s)
Tiazolidinas/química , Tiazolidinas/farmacología , Analgésicos/química , Analgésicos/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Estructura Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA