Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38822516

RESUMEN

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Asunto(s)
Cadherinas , Toxina Diftérica , Transición Epitelial-Mesenquimal , Regiones Promotoras Genéticas , Humanos , Células A549 , Antígenos CD/genética , Antígenos CD/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos , Toxina Diftérica/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Genes Transgénicos Suicidas , Regiones Promotoras Genéticas/genética , Vimentina/genética , Vimentina/metabolismo
2.
Mol Ther ; 32(7): 2316-2327, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38734901

RESUMEN

HIV-1 infection remains a public health problem with no cure. Although antiretroviral therapy (ART) is effective for suppressing HIV-1 replication, it requires lifelong drug administration due to a stable reservoir of latent proviruses and may cause serious side effects and drive the emergence of drug-resistant HIV-1 variants. Gene therapy represents an alternative approach to overcome the limitations of conventional treatments against HIV-1 infection. In this study, we constructed and investigated the antiviral effects of an HIV-1 Tat-dependent conditionally replicating adenovirus, which selectively replicates and expresses the diphtheria toxin A chain (Tat-CRAds-DTA) in HIV-1-infected cells both in vitro and in vivo. We found that Tat-CRAds-DTA could specifically induce cell death and inhibit virus replication in HIV-1-infected cells mediated by adenovirus proliferation and DTA expression. A low titer of progeny Tat-CRAds-DTA was also detected in HIV-1-infected cells. In addition, Tat-CRAds-DTA showed no apparent cytotoxicity to HIV-1-negative cells and demonstrated significant therapeutic efficacy against HIV-1 infection in a humanized mouse model. The findings in this study highlight the potential of Tat-CRAds-DTA as a new gene therapy for the treatment of HIV-1 infection.


Asunto(s)
Adenoviridae , Toxina Diftérica , Terapia Genética , Vectores Genéticos , Infecciones por VIH , VIH-1 , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , VIH-1/genética , Toxina Diftérica/genética , Animales , Adenoviridae/genética , Infecciones por VIH/terapia , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Ratones , Terapia Genética/métodos , Vectores Genéticos/genética , Modelos Animales de Enfermedad , Línea Celular , Células HEK293 , Expresión Génica , Fragmentos de Péptidos
3.
Curr Pharm Des ; 30(17): 1317-1325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584554

RESUMEN

BACKGROUND: Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells. METHODS: The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR. RESULTS: Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells. CONCLUSION: Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Toxina Diftérica , Neoplasias Pulmonares , Neuropilina-1 , Humanos , Neuropilina-1/metabolismo , Neuropilina-1/genética , Apoptosis/efectos de los fármacos , Toxina Diftérica/farmacología , Toxina Diftérica/química , Toxina Diftérica/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Células A549 , Péptidos/farmacología , Péptidos/química
4.
Toxins (Basel) ; 15(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38133203

RESUMEN

The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.


Asunto(s)
Toxinas Bacterianas , Inmunotoxinas , Neoplasias , Humanos , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/uso terapéutico , Toxina Diftérica/genética , Inmunotoxinas/genética , Inmunotoxinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Exotoxina A de Pseudomonas aeruginosa , Proteínas Recombinantes de Fusión/uso terapéutico , Exotoxinas/genética , Mamíferos
5.
Protein Sci ; 32(9): e4741, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515422

RESUMEN

Programmed death-1 (PD-1), an immune checkpoint receptor, is expressed on activated lymphocytes, macrophages, and some types of tumor cells. While PD-1+ cells have been implicated in outcomes of cancer immunity, autoimmunity, and chronic infections, the exact roles of these cells in various physiological and pathological processes remain elusive. Molecules that target and deplete PD-1+ cells would be instrumental in defining the roles unambiguously. Previously, an immunotoxin has been generated for the depletion of PD-1+ cells though its usage is impeded by its low production yield. Thus, a more practical molecular tool is desired to deplete PD-1+ cells and to examine functions of these cells. We designed and generated a novel anti-PD1 diphtheria immunotoxin, termed PD-1 DIT, targeting PD-1+ cells. PD-1 DIT is comprised of two single chain variable fragments (scFv) derived from an anti-PD-1 antibody, coupled with the catalytic and translocation domains of the diphtheria toxin. PD-1 DIT was produced using a yeast expression system that has been engineered to efficiently produce protein toxins. The yield of PD-1 DIT reached 1-2 mg/L culture, which is 10 times higher than the previously reported immunotoxin. Flow cytometry and confocal microscopy analyses confirmed that PD-1 DIT specifically binds to and enters PD-1+ cells. The binding avidities between PD-1 DIT and two PD-1+ cell lines are approximately 25 nM. Moreover, PD-1 DIT demonstrated potent cytotoxicity toward PD-1+ cells, with a half maximal effective concentration (EC50 ) value of 1 nM. In vivo experiments further showed that PD-1 DIT effectively depleted PD-1+ cells and enabled mice inoculated with PD-1+ tumor cells to survive throughout the study. Our findings using PD-1 DIT revealed the critical role of pancreatic PD-1+ T cells in the development of type-1 diabetes (T1D). Additionally, we observed that PD-1 DIT treatment ameliorated relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), a mouse model of relapsing-remitting multiple sclerosis (RR-MS). Lastly, we did not observe significant hepatotoxicity in mice treated with PD-1 DIT, which had been reported for other immunotoxins derived from the diphtheria toxin. With its remarkable selective and potent cytotoxicity toward PD-1+ cells, coupled with its high production yield, PD-1 DIT emerges as a powerful biotechnological tool for elucidating the physiological roles of PD-1+ cells. Furthermore, the potential of PD-1 DIT to be developed into a novel therapeutic agent becomes evident.


Asunto(s)
Inmunotoxinas , Ratones , Animales , Inmunotoxinas/genética , Inmunotoxinas/uso terapéutico , Toxina Diftérica/genética , Linfocitos T , Línea Celular
6.
Mol Biotechnol ; 65(4): 637-644, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36129635

RESUMEN

Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in a variety of cancers such as colon, stomach, pancreas, and prostate adenocarcinomas. Inhibition of EpCAM is considered as a potential target for cancer therapy. In current study, anti-EpCAM immunotoxin (α-EpCAM IT) was developed using genetic fusion of α-EpCAM single domain antibody (nanobody) (α-EpCAM Nb) to truncated form of diphtheria toxin. The expression of recombinant α-EpCAM IT was induced by Isopropyl ß-d-1-thiogalactopyranoside (IPTG) and confirmed by SDS-PAGE and western blot. Recombinant α-EpCAM IT was purified from the inclusion bodies and refolded using urea gradient procedure. The cytotoxicity and apoptosis activity of α-EpCAM IT on EpCAM over-expressing (MCF7), low-expressing (HEK293), and no-expressing (HUVEC) cells were evaluated by 3-4,5-Dimethylthiazol-2-yl (MTT) assay and annexin V-FITC-PI assay as well. In addition, anti-tumor activity of α-EpCAM IT was evaluated on nude mice bearing MCF7 tumor cells. Results showed success expression and purification of α-EpCAM IT. The α-EpCAM IT showed time and dose-dependent anti-proliferative activity on MCF-7 cells. However, α-EpCAM IT did not show any anti-proliferative activity on HEK293 and HUVEC cells as well. In addition, the annexin V-FITC-PI assay results showed that α-EpCAM IT significantly increased apoptotic rate in MCF-7 cells with no effect on HEK293 and HUVEC as well. Moreover, α-EpCAM IT significantly reduced tumor size in vivo study. The achieved results indicate the potential of designing α-EpCAM IT as a novel therapeutic for cancer therapy.


Asunto(s)
Inmunotoxinas , Anticuerpos de Dominio Único , Masculino , Animales , Ratones , Humanos , Molécula de Adhesión Celular Epitelial/genética , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Toxina Diftérica/genética , Toxina Diftérica/farmacología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Ratones Desnudos , Células HEK293 , Línea Celular Tumoral
7.
Mol Cell ; 82(18): 3484-3498.e11, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36070765

RESUMEN

ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.


Asunto(s)
ARN Catalítico , Sistemas de Secreción Tipo VI , ADP Ribosa Transferasas/química , Adenosina Difosfato/metabolismo , Antibacterianos/metabolismo , Bacterias/genética , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Bicatenario/metabolismo , Ribonucleasa P/genética , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo
8.
Protein J ; 41(4-5): 527-542, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36001255

RESUMEN

Along with all cancer treatments, including chemotherapy, radiotherapy, and surgery, targeting therapy is a new treatment manner. Immunotoxins are new recombinant structures that kill cancer cells by targeting specific antigens. Immunotoxins are composed of two parts: toxin moiety, which disrupts protein synthesis process, and antigen binding moiety that bind to antigens on the surface of cancer cells. Glypican 3 (GPC3) is an oncofetal antigen on the surface of Hepatocellular carcinoma (HCC) cells. In this study, truncated Diphtheria toxin (DT389) was fused to humanized scFv YP7 by one, two and three repeats of GGGGS linkers (DT389-(GGGGS)1-3YP7). In-silico and experimental investigation were performed to find out how many repeats of linker between toxin and scFv moieties are sufficient. Results of in-silico investigations revealed that the difference in the number of linkers does not have a significant effect on the main structures of the immunotoxin; however, the three-dimensional structure of two repeats of linker had a more appropriate structure compared to others with one and three linker replications. In addition, with enhancing the number of linkers, the probability of protein solubility has increased. Generally, the bioinformatics results of DT389-(GGGGS)2-YP7 structure showed that expression and folding is suitable; and YP7 scFv has appropriate orientation to bind GPC3. The experimental investigations indicated that the fusion protein was expressed as near to 50% soluble. Due to the high binding affinity of YP7 scFv and the proven potency of diphtheria in inhibiting protein synthesis, the proposed DT389-(GGGGS)2-YP7 immunotoxin is expected to function well in inhibiting HCC.


Asunto(s)
Carcinoma Hepatocelular , Inmunotoxinas , Neoplasias Hepáticas , Toxina Diftérica/química , Toxina Diftérica/genética , Glipicanos/uso terapéutico , Humanos , Inmunotoxinas/química , Inmunotoxinas/uso terapéutico
9.
Mol Biotechnol ; 64(11): 1218-1226, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35478310

RESUMEN

Immunotoxins have represented a great potency in targeted therapeutics to encounter tumors. They consist of a protein toxin conjugated to a targeting moiety, which recognizes a specific antigen on surface of cancer cells and accordingly induces cell death by toxin segment. The targeting part could be a nanobody, which is a group of antibodies composed of an only functional single variable heavy chain (VHH).Therefore, this study was done to produce an immunotoxin (VGRNb-DT) by chemical conjugation of a truncated diphtheria toxin moiety to an anti-vascular endothelial growth factor receptor 2(VEGFR-2) nanobody, and to identify effectiveness of immunotoxin in recognizing the VEGFR-2- positive cancer cells and inhibiting cell growth and survival. Diphtheria toxin was expressed and purified by nickel affinity chromatography, and accordingly, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis confirmed its expression. Function of heterobifunctional crosslinkers, Sulfo-SMCC (sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate), and SATP (N-succinimidyl-S- acetylthiopropionate) for bioconjugation purposes was acknowledged by cation exchange high-performance liquid chromatography (HPLC). Cytotoxicity of immunotoxin was evaluated on the VEGFR-2 positive PC-3 cell line by MTT assay. Overexpression of VEGFR-2 in the PC-3 cell line allowed immunotoxin to recognize them by anti-VEGFR-2 nanobodies. The concentrations above 5 µg/ml represented a significant decrease in cell survival rate in PC-3 cells compared to HEK293 cells (VEGFR-2 negative cells) as controls.VGRNb-DT demonstrated a successful bioconjugation; furthermore, variable concentrations were correlated with cell death in prostate cancer PC-3 cells.


Asunto(s)
Antineoplásicos , Inmunotoxinas , Anticuerpos de Dominio Único , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/farmacología , Ciclohexanos , Toxina Diftérica/genética , Células HEK293 , Humanos , Inmunotoxinas/genética , Inmunotoxinas/farmacología , Masculino , Níquel , Células PC-3 , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/farmacología , Dodecil Sulfato de Sodio
10.
Protein Pept Lett ; 29(4): 350-359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139782

RESUMEN

BACKGROUND: CRM197, a non-toxic diphtheria toxin variant, is widely used as a polysaccharide carrier in a variety of conjugate vaccines and also exhibits antitumor activity. CRM197 commercial production is limited due to the low yield of Corynebacterium diphtheriae C7 (197) tox-. Developing an efficient method for recombinant CRM197 production reduces production costs and is critical for expanding the application coverage of related medical products and basic research. Escherichia coli is a frequently used host for heterologous protein synthesis. However, the primary limitation of this system is the inclusion body formation and the low yield of active protein recovery. OBJECTIVE: As a result, we attempted to produce CRM197 in the soluble form in E. coli using a small ubiquitin-related modifier (SUMO) tag fusion and an expression strategy optimized for protein production. METHODS: CRM197 was expressed intracellularly in E. coli BL21 (DE3) with its N-terminus fused to a SUMO tag preceded by a histidine tag (HSCRM197). To improve the solubility of HSCRM197 in E. coli, a response surface method (RSM) experimental design was used based on three factors: expression temperature, inducer concentration, and sorbitol inclusion in the culture medium. Metal affinity chromatography was used to purify HSCRM197, and the SUMO tag was removed using the SUMO protease's catalytic domain. After adsorbing the SUMO tag on a Ni-NTA column, CRM197 was obtained. DNA degradation activity was determined for both HSCRM197 and CRM197. RESULTS: When HSCRM197 was expressed in E. coli under common expression conditions (37ºC, 1000 µM inducer), 15.4% of the protein was found in the cellular soluble fraction. However, when the RSM-derived expression conditions were used (30ºC, 510 µM inducer, and 200 mM sorbitol), the obtained HSCRM197 was almost completely soluble (96.5% solubility), and the system productivity was 32.67 µg ml-1 h-1. HSCRM197 and CRM197 both exhibited nuclease activity. However, the activity of CRM197 was greater than that of HSCRM197. CONCLUSION: These findings established the utility of the method developed in this study to produce CRM197 for medical applications.


Asunto(s)
Toxina Diftérica , Escherichia coli , Proteínas Bacterianas , Toxina Diftérica/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Sorbitol/metabolismo , Ubiquitina/metabolismo
11.
Sci Rep ; 11(1): 17513, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471163

RESUMEN

The control of axillary bud development after removing the terminal buds (topping) of plants is a research hotspot, and the control of gene expression, like switching on and off, allows us to further study biological traits of interest, such as plant branching and fertility. In this study, a toxin gene control system for plants based on dexamethasone (DEX) induction was constructed, and the positive transgenic tobacco exhibited growth retardation in the application area (axillary bud). The expression level of the lethal Diphtheria toxin A (DTA) gene under different DEX concentrations at different application days was analyzed. The highest expression levels appeared at 5 days after the leaf injection of DEX. The DTA transcripts were induced by 5 µM DEX and peaked in response to 50 µM DEX at 5 days after leaf injection. Here, a chemical induction system, combined with a toxin gene, were used to successfully control the growth of tobacco axillary buds after topping. The DTA expression system under DEX induction was sensitive and efficient, therefore, can be used to control axillary bud growth and development in tobacco.


Asunto(s)
Dexametasona/farmacología , Toxina Diftérica/metabolismo , Regulación de la Expresión Génica de las Plantas , Nicotiana/crecimiento & desarrollo , Fragmentos de Péptidos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Antiinflamatorios/farmacología , Toxina Diftérica/genética , Fragmentos de Péptidos/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/metabolismo
12.
Monoclon Antib Immunodiagn Immunother ; 40(3): 113-117, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34076502

RESUMEN

Immunotoxins, as a class of antitumor agents, consist of tumor-selective ligands linked to highly toxic protein molecules. This type of modified antibody has been designed for the therapy of cancers and a few viral infections. In this study, we designed immunotoxin consisting of mouse programmed cell death protein-1 (PD1), which genetically fused to diphtheria toxin (DT) subunit A (DT386). DNA construct was cloned, expressed in a bacterial system, purified, and confirmed by western blotting. The immunotoxin potency in the treatment of tumorous C57BL/6 mice was evaluated. Immunotoxin was injected intratumoral to mice, and through eight injections, 67% of the tumor volume of the test group started shrinking dramatically. On the contrary, the tumor size of the control group, treated with phosphate-buffered saline, continued its growth. The successful targeting of solid tumor cells by PD1-DT immunotoxin demonstrates the potential therapeutic utility of these conjugates.


Asunto(s)
Toxina Diftérica/farmacología , Inmunotoxinas/farmacología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/genética , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Supervivencia Celular , Toxina Diftérica/genética , Toxina Diftérica/inmunología , Humanos , Inmunotoxinas/genética , Inmunotoxinas/inmunología , Ratones , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología
13.
Cancer Sci ; 112(6): 2426-2435, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33792128

RESUMEN

E7777 is a recombinant cytotoxic fusion protein composed of the diphtheria toxin fragments A and B and human interleukin-2. It shares an amino acid sequence with denileukin diftitox, but has improved purity and an increased percentage of active monomer. We undertook a multicenter, single-arm phase II study of E7777 in patients with relapsed or refractory peripheral T-cell lymphoma (PTCL) and cutaneous T-cell lymphoma (CTCL) to evaluate its efficacy, safety, pharmacokinetics, and immunogenicity. A total of 37 patients were enrolled, of which 17 and 19 patients had PTCL and CTCL, respectively, and one patient with another type of lymphoma (extranodal natural killer/T-cell lymphoma, nasal type), diagnosed by the Central Pathological Diagnosis Committee. Among the 36 patients with PTCL and CTCL, objective response rate based on the independent review was 36% (41% and 31%, respectively). The median progression-free survival was 3.1 months (2.1 months in PTCL and 4.2 months in CTCL). The common adverse events (AEs) observed were increased aspartate aminotransferase (AST) / alanine aminotransferase (ALT), hypoalbuminemia, lymphopenia, and pyrexia. Our results indicated that a 9 µg/kg/d dose of E7777 shows efficacy and a manageable safety profile in Japanese patients with relapsed or refractory PTCL and CTCL, with clinical activity observed across the range of CD25 expression. The common AEs were manageable, but increase in ALT / AST, hypoalbuminemia, and capillary leak syndrome should be carefully managed during the treatment.


Asunto(s)
Interleucina-2/administración & dosificación , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma de Células T Periférico/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Recombinantes de Fusión/administración & dosificación , Administración Intravenosa , Sitios de Unión , Toxina Diftérica/administración & dosificación , Toxina Diftérica/efectos adversos , Toxina Diftérica/química , Toxina Diftérica/genética , Toxina Diftérica/farmacocinética , Esquema de Medicación , Femenino , Humanos , Interleucina-2/efectos adversos , Interleucina-2/química , Interleucina-2/genética , Interleucina-2/farmacocinética , Japón , Linfoma Cutáneo de Células T/sangre , Linfoma de Células T Periférico/sangre , Masculino , Recurrencia Local de Neoplasia/sangre , Proteínas Recombinantes de Fusión/efectos adversos , Proteínas Recombinantes de Fusión/farmacocinética , Análisis de Supervivencia , Resultado del Tratamiento
14.
Circ Res ; 128(2): 155-168, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33146578

RESUMEN

RATIONALE: Endogenously cycling adult cardiomyocytes increase after myocardial infarction (MI) but remain scarce and are generally thought not to contribute to myocardial function. However, this broadly held assumption has not been tested, mainly because of the lack of transgenic reporters that restrict Cre expression to adult cardiomyocytes that reenter the cell cycle. OBJECTIVE: We created and validated a new transgenic mouse, αMHC (alpha myosin heavy chain)-MerDreMer-Ki67p-RoxedCre (denoted αDKRC [cardiomyocyte-specific αMHC-MerDreMer-Ki67p-RoxedCre]) that restricts Cre expression to cycling adult cardiomyocytes and uniquely integrates spatial and temporal adult cardiomyocyte cycling events based on the DNA specificities of orthologous Dre and Cre recombinases. We then created αDKRC::DTA mice that expressed an inducible diphtheria toxin in adult cycling cardiomyocytes and examined the effects of ablating these endogenously cycling cardiomyocytes on myocardial function after ischemic-reperfusion (I/R) MI. METHODS AND RESULTS: A tandem αDKRC transgene was designed, validated in cultured cells, and used to make transgenic mice. The αDKRC transgene integrated between MYH6 and MYH7 and did not disrupt expression of the surrounding genes. Compared with controls, αDKRC::RLTG (Rox-Lox-tdTomato-eGFP) mice treated with Tamoxifen expressed tdTomato+ in cardiomyocytes with rare Bromodeoxyuridine+, eGFP+ cardiomyocytes, consistent with reentry of the cell cycle. We then pretreated αDKRC::RLTG mice with Tamoxifen to activate the reporter before sham or reperfusion (I/R) MI surgeries. Compared with Sham surgery, the I/R MI group had increased single and paired eGFP+ (enhanced green fluorescent protein)+ cardiomyocytes predominantly in the border zones (5.8±0.5 versus 3.3±0.3 cardiomyocytes per 10-micron section, N=8-9 mice per group, n=16-24 sections per mouse), indicative of cycled cardiomyocytes. The single to paired eGFP+ cardiomyocyte ratio was ≈9 to 1 (5.2±0.4 single versus 0.6±0.2 paired cardiomyocytes) in the I/R MI group after MI, suggesting that cycling cardiomyocytes were more likely to undergo polyploidy than replication. The ablation of endogenously cycling adult cardiomyocytes in αDKRC::DTA (diphtheria) mice caused progressive worsening left ventricular chamber size and function after I/R MI, compared with controls. CONCLUSIONS: Although scarce, endogenously cycling adult cardiomyocytes contribute to myocardial function after injury, suggesting that these cells may be physiologically relevant.


Asunto(s)
Ciclo Celular , Proliferación Celular , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Animales , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Integrasas/genética , Integrasas/metabolismo , Antígeno Ki-67/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Regiones Promotoras Genéticas , Factores de Tiempo , Función Ventricular Izquierda , Remodelación Ventricular
15.
Sci Adv ; 6(18)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32917630

RESUMEN

Toxins efficiently deliver cargo to cells by binding to cell surface ligands, initiating endocytosis, and escaping the endolysosomal pathway into the cytoplasm. We took advantage of this delivery pathway by conjugating an attenuated diphtheria toxin to siRNA, thereby achieving gene downregulation in patient-derived glioblastoma cells. We delivered siRNA against integrin-ß1 (ITGB1)-a gene that promotes invasion and metastasis-and siRNA against eukaryotic translation initiation factor 3 subunit b (eIF-3b)-a survival gene. We demonstrated mRNA downregulation of both genes and the corresponding functional outcomes: knockdown of ITGB1 led to a significant inhibition of invasion, shown with an innovative 3D hydrogel model; and knockdown of eIF-3b resulted in significant cell death. This is the first example of diphtheria toxin being used to deliver siRNAs, and the first time a toxin-based siRNA delivery strategy has been shown to induce relevant genotypic and phenotypic effects in cancer cells.


Asunto(s)
Toxina Diftérica , Endocitosis , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(36): 22090-22100, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32839344

RESUMEN

The application of proteinaceous toxins for cell ablation is limited by their high on- and off-target toxicity, severe side effects, and a narrow therapeutic window. The selectivity of targeting can be improved by intein-based toxin reconstitution from two dysfunctional fragments provided their cytoplasmic delivery via independent, selective pathways. While the reconstitution of proteins from genetically encoded elements has been explored, exploiting cell-surface receptors for boosting selectivity has not been attained. We designed a robust splitting algorithm and achieved reliable cytoplasmic reconstitution of functional diphtheria toxin from engineered intein-flanked fragments upon receptor-mediated delivery of one of them to the cells expressing the counterpart. Retargeting the delivery machinery toward different receptors overexpressed in cancer cells enables selective ablation of specific subpopulations in mixed cell cultures. In a mouse model, the transmembrane delivery of a split-toxin construct potently inhibits the growth of xenograft tumors expressing the split counterpart. Receptor-mediated delivery of engineered split proteins provides a platform for precise therapeutic and experimental ablation of tumors or desired cell populations while also greatly expanding the applicability of the intein-based protein transsplicing.


Asunto(s)
Toxinas Bacterianas/administración & dosificación , Toxinas Bacterianas/química , Citoplasma/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Inteínas , Neoplasias/tratamiento farmacológico , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular Tumoral , Citoplasma/genética , Toxina Diftérica/administración & dosificación , Toxina Diftérica/química , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Femenino , Xenoinjertos , Humanos , Inmunotoxinas/administración & dosificación , Inmunotoxinas/química , Inmunotoxinas/genética , Inmunotoxinas/metabolismo , Ratones , Ratones Desnudos , Neoplasias/genética , Neoplasias/metabolismo , Dominios Proteicos , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(29): 16938-16948, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32616570

RESUMEN

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Furthermore, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutant RAS Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising approach to developing RAS therapeutics against a broad array of cancers.


Asunto(s)
Toxina Diftérica/metabolismo , Endopeptidasas/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Proteolisis , Proteínas de Unión al GTP rap1/metabolismo , Proteínas ras/metabolismo , Animales , Antineoplásicos/uso terapéutico , Células Cultivadas , Toxina Diftérica/química , Toxina Diftérica/genética , Endopeptidasas/química , Endopeptidasas/genética , Femenino , Células HCT116 , Humanos , Masculino , Ratones , Ratones Desnudos , Mutación , Señales de Clasificación de Proteína , Proteínas Recombinantes/uso terapéutico , Proteínas ras/genética
18.
Mol Oncol ; 14(5): 991-1000, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32107846

RESUMEN

The majority of clinically diagnosed cutaneous T-cell lymphomas (CTCL) highly express the cell-surface markers CC chemokine receptor 4 (CCR4) and/or CD25. Recently, we have developed diphtheria toxin-based recombinant Ontak®-like human IL2 fusion toxin (IL2 fusion toxin) and anti-human CCR4 immunotoxin (CCR4 IT). In this study, we first compared the efficacy of the CCR4 IT vs IL2 fusion toxin for targeting human CD25+ CCR4+ CTCL. We demonstrated that CCR4 IT was more effective than IL2 fusion toxin. We further constructed an IL2-CCR4 bispecific IT. The bispecific IT was significantly more effective than either IL2 fusion toxin or CCR4 IT alone. The bispecific IT is a promising novel targeted therapeutic drug candidate for the treatment of refractory and recurrent human CD25+ and/or CCR4+ CTCL.


Asunto(s)
Toxina Diftérica/farmacología , Inmunotoxinas/farmacología , Interleucina-2/farmacología , Linfoma Cutáneo de Células T/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Toxina Diftérica/genética , Citometría de Flujo , Humanos , Inmunotoxinas/genética , Concentración 50 Inhibidora , Interleucina-2/genética , Interleucina-2/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Linfoma Cutáneo de Células T/mortalidad , Ratones , Receptores CCR4/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Front Immunol ; 11: 607048, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643293

RESUMEN

Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast cells also have antiinflammatory functions. They release pro- as well as antiinflammatory mediators, depending on the biological setting. Here we aimed to better understand the role of mast cells during the resolution phase of a local inflammation induced with the Toll-like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined with a statistical neighborhood analysis showed that mast cells are located in a predominantly antiinflammatory microenvironment during resolution of inflammation and that mast cell-deficiency causes decreased efferocytosis in the resolution phase. Accordingly, FACS analysis showed decreased phagocytosis of zymosan and neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I interferon (IFN) response, which is known to enhance phagocytosis by macrophages. Both, zymosan and lipopolysaccharides (LPS) induced IFN-ß synthesis in BMMCs in similar amounts as in bone marrow derived macrophages. IFN-ß was expressed by mast cells in paws from naïve mice and during zymosan-induced inflammation. As described for macrophages the release of type I IFNs from mast cells depended on TLR internalization and endosome acidification. In conclusion, mast cells are able to produce several mediators including IFN-ß, which are alone or in combination with each other able to regulate the phagocytotic activity of macrophages during resolution of inflammation.


Asunto(s)
Inflamación/metabolismo , Interferón Tipo I/metabolismo , Mastocitos/metabolismo , Receptores Toll-Like/metabolismo , Animales , Células Cultivadas , Quimasas/genética , Quimasas/metabolismo , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Interferón Tipo I/genética , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis , Transducción de Señal , Receptores Toll-Like/agonistas , Zimosan
20.
Mol Pharm ; 17(1): 301-315, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31765570

RESUMEN

The controversy surrounding the use of diphtheria toxin (DT) as a therapeutic agent against tumor cells arises mainly from its unexpected harmfulness to healthy tissues. We encoded the cytotoxic fragment A of DT (DTA) as an objective gene in the Light-On gene-expression system to construct plasmids pGAVPO (pG) and pU5-DTA (pDTA). Meanwhile, a cRGD-modified ternary complex comprising plasmids, chitosan, and liposome (pG&pDTA@cRGD-CL) was prepared as a nanocarrier to ensure transfection efficiency. Benefiting from spatiotemporal control of this light-switchable transgene system and the superior tumor targeting of the carrier, toxins were designed to be expressed selectively in illuminated lesions. In vitro studies suggested that pG&pDTA@cRGD-CL exerted arrest of the S phase in B16F10 cells upon blue light irradiation and, ultimately, induced the apoptosis and necrosis of tumor cells. Such DTA-based treatment exerted enhanced antitumor activity in mice bearing B16F10 xenografts and displayed prolonged survival time with minimal side effects. Hence, we described novel DTA-based therapy combined with nanotechnology and the Light-On gene-expression system: such treatment could be a promising strategy against melanoma.


Asunto(s)
Toxina Diftérica/genética , Expresión Génica/efectos de la radiación , Terapia Genética , Liposomas/química , Melanoma Experimental/terapia , Nanotecnología/métodos , Fragmentos de Péptidos/genética , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Quitosano/química , Expresión Génica/genética , Liposomas/ultraestructura , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Péptidos Cíclicos/química , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular/genética , Puntos de Control de la Fase S del Ciclo Celular/efectos de la radiación , Esferoides Celulares/efectos de la radiación , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA