Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.522
Filtrar
1.
Cell Mol Neurobiol ; 44(1): 43, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703332

RESUMEN

Cell transplantation is a promising treatment option for spinal cord injury (SCI). However, there is no consensus on the choice of carrier scaffolds to host the cells. This study aims to evaluate the efficacy of different material scaffold-mediated cell transplantation in treating SCI in rats. According to PRISMA's principle, Embase, PubMed, Web of Science, and Cochrane databases were searched, and relevant literature was referenced. Only original research on cell transplantation plus natural or synthetic scaffolds in SCI rats was included. Direct and indirect evidence for improving hind limb motor function was pooled through meta-analysis. A subgroup analysis of some factors that may affect the therapeutic effect was conducted to understand the results fully. In total, 25 studies met the inclusion criteria, in which 293 rats received sham surgery, 78 rats received synthetic material scaffolds, and 219 rats received natural materials scaffolds. The network meta-analysis demonstrated that although synthetic scaffolds were slightly inferior to natural scaffolds in terms of restoring motor function in cell transplantation of SCI rats, no statistical differences were observed between the two (MD: -0.35; 95% CI -2.6 to 1.9). Moreover, the subgroup analysis revealed that the type and number of cells may be important factors in therapeutic efficacy (P < 0.01). Natural scaffolds and synthetic scaffolds are equally effective in cell transplantation of SCI rats without significant differences. In the future, the findings need to be validated in multicenter, large-scale, randomized controlled trials in clinical practice. Trial registration: Registration ID CRD42024459674 (PROSPERO).


Asunto(s)
Trasplante de Células , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Traumatismos de la Médula Espinal/terapia , Ratas , Andamios del Tejido/química , Trasplante de Células/métodos , Metaanálisis en Red , Resultado del Tratamiento , Recuperación de la Función
2.
Cells ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38786039

RESUMEN

Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Humanos , Animales , Células Madre , Trasplante de Células Madre , Células Madre Mesenquimatosas
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 608-612, 2024 May 15.
Artículo en Chino | MEDLINE | ID: mdl-38752249

RESUMEN

Objective: To review the research progress of C 5 palsy (C 5P) after cervical surgery, providing new clinical intervention ideas for the C 5P patients. Methods: The relevant literature domestically and abroad was extensively consulted and the latest developments in the incidence, risk factors, manifestations and diagnosis, prevention, and intervention measures of C 5P were systematically expounded. Results: C 5P is characterized by weakness in the C 5 nerve innervation area after cervical decompression surgery, manifested as limited shoulder abduction and elbow flexion, with an incidence rate more than 5%, often caused by segmental spinal cord injury or mechanical injury to the nerve roots. For patients with risk factors, careful operation and preventive measures can reduce the incidence of C 5P. Most of the patients can recover with conservative treatment such as drug therapy and physical therapy, while those without significant improvement after 6 months of treatment may require surgical intervention such as foraminal decompression and nerve displacement. Conclusion: Currently, there has been some advancement in the etiology and intervention of C 5P. Nevertheless, further research is imperative to assess the timing of intervention and surgical protocol.


Asunto(s)
Vértebras Cervicales , Descompresión Quirúrgica , Complicaciones Posoperatorias , Humanos , Vértebras Cervicales/cirugía , Descompresión Quirúrgica/métodos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/terapia , Factores de Riesgo , Parálisis/etiología , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/terapia , Raíces Nerviosas Espinales
4.
Stem Cell Res Ther ; 15(1): 143, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764049

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS: SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS: For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION: Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.


Asunto(s)
Modelos Animales de Enfermedad , Exosomas , Células Madre Mesenquimatosas , Neuralgia , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Exosomas/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Ratas , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Locomoción , Esponja de Gelatina Absorbible , Cordón Umbilical/citología
5.
J Nanobiotechnology ; 22(1): 277, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783332

RESUMEN

Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.


Asunto(s)
Gasotransmisores , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Humanos , Animales , Gasotransmisores/uso terapéutico , Gasotransmisores/metabolismo , Óxido Nítrico/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Monóxido de Carbono/metabolismo , Monóxido de Carbono/uso terapéutico , Oxígeno/metabolismo , Médula Espinal , Hidrógeno/uso terapéutico , Hidrógeno/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38780270

RESUMEN

Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.


Asunto(s)
Hiperoxia , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Masculino , Hiperoxia/fisiopatología , Hiperoxia/sangre , Ratas , Oxígeno/sangre , Oxígeno/metabolismo , Médula Espinal/metabolismo , Médula Espinal/irrigación sanguínea , Médula Espinal/fisiopatología , Médula Cervical/lesiones , Médula Cervical/metabolismo , Presión Sanguínea/fisiología , Oxihemoglobinas/metabolismo , Frecuencia Cardíaca/fisiología
7.
Acta Biomater ; 180: 308-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615813

RESUMEN

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Asunto(s)
Matriz Extracelular , Factor Neurotrófico Derivado de la Línea Celular Glial , Neurogénesis , Ratas Sprague-Dawley , Recuperación de la Función , Remielinización , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Neurogénesis/efectos de los fármacos , Remielinización/efectos de los fármacos , Matriz Extracelular/metabolismo , Recuperación de la Función/efectos de los fármacos , Ratas , Femenino , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
8.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682940

RESUMEN

Resolutive cures for spinal cord injuries (SCIs) are still lacking, due to the complex pathophysiology. One of the most promising regenerative approaches is based on stem cell transplantation to replace lost tissue and promote functional recovery. This approach should be further explored better in vitro and ex vivo for safety and efficacy before proceeding with more expensive and time-consuming animal testing. In this work, we show the establishment of a long-term platform based on mouse spinal cord (SC) organotypic slices transplanted with human neural stem cells to test cellular replacement therapies for SCIs. Standard SC organotypic cultures are maintained for around 2 or 3 weeks in vitro. Here, we describe an optimized protocol for long-term maintenance (≥30 days) for up to 90 days. The medium used for long-term culturing of SC slices was also optimized for transplanting neural stem cells into the organotypic model. Human SC-derived neuroepithelial stem (h-SC-NES) cells carrying a green fluorescent protein (GFP) reporter were transplanted into mouse SC slices. Thirty days after the transplant, cells still show GFP expression and a low apoptotic rate, suggesting that the optimized environment sustained their survival and integration inside the tissue. This protocol represents a robust reference for efficiently testing cell replacement therapies in the SC tissue. This platform will allow researchers to perform an ex vivo pre-screening of different cell transplantation therapies, helping them to choose the most appropriate strategy before proceeding with in vivo experiments.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Médula Espinal , Animales , Ratones , Traumatismos de la Médula Espinal/terapia , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Médula Espinal/citología , Técnicas de Cultivo de Órganos/métodos , Trasplante de Células Madre/métodos
9.
Exp Neurol ; 376: 114779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621449

RESUMEN

Neural stem cells have exhibited efficacy in pre-clinical models of spinal cord injury (SCI) and are on a translational path to human testing. We recently reported that neural stem cells must be driven to a spinal cord fate to optimize host axonal regeneration into sites of implantation in the injured spinal cord, where they subsequently form neural relays across the lesion that support significant functional improvement. We also reported methods of deriving and culturing human spinal cord neural stem cells derived from embryonic stem cells that can be sustained over serial high passage numbers in vitro, providing a potentially optimized cell source for human clinical trials. We now report further optimization of methods for deriving and sustaining cultures of human spinal cord neural stem cell lines that result in improved karyotypic stability while retaining anatomical efficacy in vivo. This development improves prospects for safe human translation.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales , Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Células-Madre Neurales/citología , Médula Espinal/citología , Animales , Traumatismos de la Médula Espinal/terapia , Diferenciación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Ratones , Trasplante de Células Madre/métodos
10.
Chin J Traumatol ; 27(3): 134-146, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570272

RESUMEN

Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.


Asunto(s)
Portadores de Fármacos , Exosomas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Humanos , Células Madre Mesenquimatosas/metabolismo , Animales , Apoptosis , Trasplante de Células Madre Mesenquimatosas/métodos
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 480-486, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38632070

RESUMEN

Objective: To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods: A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T 10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T 10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 µg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results: All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group ( P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group ( P<0.05); the bFGF group showed an increase compared to model group ( P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant ( P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1ß, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group ( P<0.05). The above indexes in bFGF group significantly improved when compared with model group ( P<0.05). Conclusion: bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacología , Factor de Transcripción STAT3/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Transducción de Señal
12.
Mol Biol Rep ; 51(1): 570, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658405

RESUMEN

INTRODUCTION: Spinal cord injury (SCI) leads to significant destruction of nerve tissue, causing the degeneration of axons and the formation of cystic cavities. This study aimed to examine the characteristics of human umbilical cord-derived mesenchymal stem cells (HUCMSCs) cultured in a serum-free conditioned medium (CM) and assess their effectiveness in a well-established hemitransection SCI model. MATERIALS AND METHODS: In this study, HUCMSCs cultured medium was collected and characterized by measuring IL-10 and identifying proteomics using mass spectroscopy. This collected serum-free CM was further used in the experiments to culture and characterize the HUMSCs. Later, neuronal cells derived from CM-enriched HUCMSC were tested sequentially using an injectable caffeic acid-bioconjugated gelatin (CBG), which was further transplanted in a hemitransection SCI model. In vitro, characterization of CM-enriched HUCMSCs and differentiated neuronal cells was performed using flow cytometry, immunofluorescence, electron microscopy, and post-transplant analysis using immunohistology analysis, qPCR, in vivo bioluminescence imaging, and behavioral analysis using an infrared actimeter. RESULTS: The cells that were cultured in the conditioned media produced a pro-inflammatory cytokine called IL-10. Upon examining the secretome of the conditioned media, the Kruppel-like family of KRAB and zinc-finger proteins (C2H2 and C4) were found to be activated. Transcriptome analysis also revealed an increased expression of ELK-1, HOXD8, OTX2, YY1, STAT1, ETV7, and PATZ1 in the conditioned media. Furthermore, the expression of Human Stem-101 confirmed proliferation during the first 3 weeks after transplantation, along with the migration of CBG-UCNSC cells within the transplanted area. The gene analysis showed increased expression of Nestin, NeuN, Calb-2, Msi1, and Msi2. The group that received CBG-UCNSC therapy showed a smooth recovery by the end of week 2, with most rats regaining their walking abilities similar to those before the spinal cord injury by week 5. CONCLUSIONS: In conclusion, the CBG-UCNSC method effectively preserved the integrity of the transplanted neuronal-like cells and improved locomotor function. Thus, CM-enriched cells can potentially reduce biosafety risks associated with animal content, making them a promising option for clinical applications in treating spinal cord injuries.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Transcriptoma , Cordón Umbilical , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Células Madre Mesenquimatosas/metabolismo , Medios de Cultivo Condicionados/farmacología , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Humanos , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Transcriptoma/genética , Ratas , Secretoma/metabolismo , Diferenciación Celular , Neuronas/metabolismo , Modelos Animales de Enfermedad , Interleucina-10/genética , Interleucina-10/metabolismo , Células Cultivadas , Proteómica/métodos
13.
Int Immunopharmacol ; 132: 111983, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593504

RESUMEN

Developing biomimetic nanoparticles without off-target side-effects remains a major challenge in spinal cord injury (SCI) immunotherapy. In this paper, we have conducted a drug carrier which is biocompatible macrophages-exocytosed exosome-biomimetic manganese (Mn)-iron prussian blue analogues (MPBs) for SCI immunotherapy. Exosome-sheathed MPBs (E-MPBs) exhibit promoted microglia accumulation, alleviation from H2O2-induced microenvironment and inhibition of apoptosis and inflammation in vitro. In addition, E-MPBs possessed significant tissue repair and neuroprotection in vivo. These properties endowed E-MPBs with great improvement in vivo in function recovery, resulting in anti-neuroinflammation activity and excellent biocompatibility in mice SCI model. As a promising treatment for efficient SCI immunotherapy, these results demonstrate the use of exosome-sheathed biomimetic nanoparticles exocytosed by anti-inflammation cells is feasible.


Asunto(s)
Exosomas , Inmunoterapia , Macrófagos , Nanopartículas , Traumatismos de la Médula Espinal , Animales , Exosomas/trasplante , Exosomas/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/inmunología , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones , Nanopartículas/química , Inmunoterapia/métodos , Ferrocianuros/química , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos , Microglía/inmunología , Células RAW 264.7 , Apoptosis/efectos de los fármacos
14.
Nat Commun ; 15(1): 2201, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561341

RESUMEN

Intrathecal delivery of autologous culture-expanded adipose tissue-derived mesenchymal stem cells (AD-MSC) could be utilized to treat traumatic spinal cord injury (SCI). This Phase I trial (ClinicalTrials.gov: NCT03308565) included 10 patients with American Spinal Injury Association Impairment Scale (AIS) grade A or B at the time of injury. The study's primary outcome was the safety profile, as captured by the nature and frequency of adverse events. Secondary outcomes included changes in sensory and motor scores, imaging, cerebrospinal fluid markers, and somatosensory evoked potentials. The manufacturing and delivery of the regimen were successful for all patients. The most commonly reported adverse events were headache and musculoskeletal pain, observed in 8 patients. No serious AEs were observed. At final follow-up, seven patients demonstrated improvement in AIS grade from the time of injection. In conclusion, the study met the primary endpoint, demonstrating that AD-MSC harvesting and administration were well-tolerated in patients with traumatic SCI.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Traumatismos Vertebrales , Humanos , Trasplante Autólogo/efectos adversos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/complicaciones , Traumatismos Vertebrales/complicaciones , Resultado del Tratamiento
15.
Stem Cell Res Ther ; 15(1): 114, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650015

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of transplanted cells using stepwise combined cell therapy with human mesenchymal stem cells (hMSC) and induced pluripotent stem cell (iPSC)-derived motor neuron progenitor cells (iMNP) in a rat model of SCI. METHODS: A contusive SCI model was developed in Sprague-Dawley rats using multicenter animal spinal cord injury study (MASCIS) impactor. Three protocols were designed and conducted as follows: (Subtopic 1) chronic SCI + iMNP, (Subtopic 2) acute SCI + multiple hMSC injections, and (Main topic) chronic SCI + stepwise combined cell therapy using multiple preemptive hMSC and iMNP. Neurite outgrowth was induced by coculturing hMSC and iPSC-derived motor neuron (iMN) on both two-dimensional (2D) and three-dimensional (3D) spheroid platforms during mature iMN differentiation in vitro. RESULTS: Stepwise combined cell therapy promoted mature motor neuron differentiation and axonal regeneration at the lesional site. In addition, stepwise combined cell therapy improved behavioral recovery and was more effective than single cell therapy alone. In vitro results showed that hMSC and iMN act synergistically and play a critical role in the induction of neurite outgrowth during iMN differentiation and maturation. CONCLUSIONS: Our findings show that stepwise combined cell therapy can induce alterations in the microenvironment for effective cell therapy in SCI. The in vitro results suggest that co-culturing hMSC and iMN can synergistically promote induction of MN neurite outgrowth.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Neuronas Motoras , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Animales , Células Madre Pluripotentes Inducidas/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Neuronas Motoras/citología , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Modelos Animales de Enfermedad , Regeneración Nerviosa
16.
Stem Cell Res Ther ; 15(1): 67, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444003

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen. Therefore, this study was conducted to investigate the safety and efficacy of co-transplanting of MSC and NSC sheets into an SCI mice model on the locomotor function and pathological changes of injured spinal cord. METHODS: To evaluate the therapeutic effects of combination cells, acute SCI mice model were established and combined transplantation of hiPSC-NSCs and hMSCs into the lesion site immediately after the injury. Basso mouse scale was used to perform the open-field tests of hind limb motor function at days post-operation (dpo) 1, 3, 5, and 7 after SCI and every week after surgery. Spinal cord and serum samples were collected at dpo 7, 14, and 28 to detect inflammatory and neurotrophic factors. Hematoxylin-eosin (H&E) staining, masson staining and transmission electron microscopy were used to evaluate the morphological changes, fibrosis area and ultrastructure of the spinal cord. RESULT: M&N transplantation reduced fibrosis formation and the inflammation level while promoting the secretion of nerve growth factor and brain-derived neurotrophic factor. We observed significant reduction in damaged tissue and cavity area, with dramatic improvement in the M&N group. Compared with the Con group, the M&N group exhibited significantly improved behaviors, particularly limb coordination. CONCLUSION: Combined transplantation of hiPSC-NSC and hMSC could significantly ameliorate neuroinflammation, promote neuroregeneration, and decrease spinal fibrosis degree in safe and effective pattern, which would be indicated as a novel potential cell treatment option.


Asunto(s)
Células Madre Pluripotentes Inducidas , Traumatismos de la Médula Espinal , Animales , Ratones , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal/terapia , Modelos Animales de Enfermedad , Fibrosis
17.
Cell Commun Signal ; 22(1): 162, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448976

RESUMEN

Microglia/macrophages are major contributors to neuroinflammation in the central nervous system (CNS) injury and exhibit either pro- or anti-inflammatory phenotypes in response to specific microenvironmental signals. Our latest in vivo and in vitro studies demonstrated that curcumin-treated olfactory ensheathing cells (aOECs) can effectively enhance neural survival and axonal outgrowth, and transplantation of aOECs improves the neurological outcome after spinal cord injury (SCI). The therapeutic effect is largely attributed to aOEC anti-inflammatory activity through the modulation of microglial polarization from the M1 to M2 phenotype. However, very little is known about what viable molecules from aOECs are actively responsible for the switch of M1 to M2 microglial phenotypes and the underlying mechanisms of microglial polarization. Herein, we show that Interleukin-4 (IL-4) plays a leading role in triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 markers IL­1ß, IL­6, tumour necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) and elevating the levels of M2 markers Arg-1, TGF-ß, IL-10, and CD206. Strikingly, blockade of IL-4 signaling by siRNA and a neutralizing antibody in aOEC medium reverses the transition of M1 to M2, and the activated microglia stimulated with the aOEC medium lacking IL-4 significantly decreases neuronal survival and neurite outgrowth. In addition, transplantation of aOECs improved the neurological function deficits after SCI in rats. More importantly, the crosstalk between JAK1/STAT1/3/6-targeted downstream signals and NF-κB/SOCS1/3 signaling predominantly orchestrates IL-4-modulated microglial polarization event. These results provide new insights into the molecular mechanisms of aOECs driving the M1-to-M2 shift of microglia and shed light on new therapies for SCI through the modulation of microglial polarization.


Asunto(s)
Curcumina , Traumatismos de la Médula Espinal , Animales , Ratas , Microglía , Interleucina-4/farmacología , Curcumina/farmacología , Macrófagos , Traumatismos de la Médula Espinal/terapia , Antiinflamatorios
18.
J Orthop Surg Res ; 19(1): 184, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491537

RESUMEN

Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system and leads to incomplete or complete loss of the body's autonomous motor and sensory functions, seriously endangering human health. Recently, exosomes have been proposed as important substances in cell-to-cell interactions. Mesenchymal stem cell (MSC)-derived exosomes exert good therapeutic effects and play a crucial role in neurological damage repair. However, the detailed mechanisms underlying their effects remain unknown. Herein, we found that compared to SCI rats, those subjected to umbilical cord MSC (UC-MSC)-derived exosomes injection showed an improved motor ability. Nevertheless, the transcriptome of BV2 microglia in different treatment groups indicated that the action pathway of exosomes might be the NF-κB/MAPK pathway. Additionally, exosomes from UC-MSCs could inhibit P38, JNK, ERK, and P65 phosphorylation in BV2 microglia and SCI rat tissues. Moreover, exosomes could inhibit apoptosis and inflammatory reaction and reactive oxygen species (ROS) production of BV2 microglia in vitro and in vivo. In conclusion, UC-MSCs-derived exosomes might protect SCI in rats by inhibiting inflammatory response via the NF-κB/MAPK signaling pathway, representing novel treatment targets or approaches for SCI.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Ratas , Humanos , Animales , FN-kappa B/metabolismo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Cordón Umbilical/metabolismo
19.
J Nanobiotechnology ; 22(1): 108, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475766

RESUMEN

Neurotrauma, encompassing traumatic brain injuries (TBI) and spinal cord injuries (SCI) impacts a significant portion of the global population. While spontaneous recovery post-TBI or SCI is possible, recent advancements in cell-based therapies aim to bolster these natural reparative mechanisms. Emerging research indicates that the beneficial outcomes of such therapies might be largely mediated by exosomes secreted from the administered cells. While stem cells have garnered much attention, exosomes derived from non-stem cells, including neurons, Schwann cells, microglia, and vascular endothelial cells, have shown notable therapeutic potential. These exosomes contribute to angiogenesis, neurogenesis, and axon remodeling, and display anti-inflammatory properties, marking them as promising agents for neurorestorative treatments. This review provides an in-depth exploration of the current methodologies, challenges, and future directions regarding the therapeutic role of non-stem cell-derived exosomes in neurotrauma.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Humanos , Células Endoteliales , Microglía , Neurogénesis , Traumatismos de la Médula Espinal/terapia
20.
J Control Release ; 369: 335-350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519036

RESUMEN

Vascular injury following spinal cord injury (SCI) can significantly exacerbate secondary SCI and result in neurological dysfunction. Strategies targeting angiogenesis have demonstrated potential in enhancing functional recovery post-SCI. In the context of angiogenesis, the CD146+ and CD271+ subpopulations of mesenchymal stem cells (MSCs) have been recognized for their angiogenic capabilities in tissue repair. Small extracellular vesicles (sEVs) derived from MSCs are nanoscale vesicles containing rich bioactive components that play a crucial role in tissue regeneration. However, the precise role of sEVs derived from CD146+CD271+ UCMSCs (CD146+CD271+ UCMSC-sEVs) in SCI remain unclear. In this study, CD146+CD271+ UCMSC-sEVs were non-invasively administered via intranasal delivery, demonstrating a significant capacity to stimulate angiogenesis and improve functional recovery in mice following SCI. Furthermore, in vitro assessments revealed the effective enhancement of migration and tube formation capabilities of the murine brain microvascular endothelial cell line (bEnd.3) by CD146+CD271+UCMSC-sEVs. MicroRNA array analysis confirmed significant enrichment of multiple microRNAs within CD146+CD271+ UCMSC-sEVs. Subsequent in vivo and in vitro experiments demonstrated that CD146+CD271+ UCMSC-sEVs promote enhanced angiogenesis and improved functional recovery mediated by miR-27a-3p. Further mechanistic studies revealed that miR-27a-3p sourced from CD146+CD271+ UCMSC-sEVs enhances migration and tube formation of bEnd.3 cells in vitro by suppressing the expression of Delta Like Canonical Notch Ligand 4 (DLL4), thereby promoting angiogenesis in vivo. Collectively, our results demonstrate that a crucial role of CD146+CD271+ UCMSC-sEVs in inhibiting DLL4 through the transfer of miR-27a-3p, which leads to the promotion of angiogenesis and improved functional recovery after SCI.


Asunto(s)
Administración Intranasal , Vesículas Extracelulares , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Ratones , Línea Celular , Antígeno CD146/metabolismo , MicroARNs/administración & dosificación , Recuperación de la Función , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Movimiento Celular , Células Endoteliales/metabolismo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA