Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 295(5): 1225-1239, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31819007

RESUMEN

Glycan biosynthesis relies on nucleotide sugars (NSs), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease. However, how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, here we examined UDP-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. Using immunoblotting, flow cytometry, and LC-MS-based glycolipid and glycan profiling, we found that CRISPR/Cas9-mediated GALE deletion in human cells triggers major imbalances in NSs and dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the cell-surface death receptor FS-7-associated surface antigen. In particular, we observed substantial decreases in total sialic acid, galactose, and GalNAc levels in glycans. These changes also directly impacted cell signaling, as GALE-/- cells exhibited FS-7-associated surface antigen ligand-induced apoptosis. Our results reveal a role of GALE-mediated NS regulation in death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.


Asunto(s)
Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Azúcares/metabolismo , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/metabolismo , Receptor fas/metabolismo , Apoptosis/genética , Cromatografía Liquida , Desoxiazúcares/metabolismo , Técnicas de Inactivación de Genes , Glucolípidos/biosíntesis , Glucolípidos/química , Glicoproteínas/biosíntesis , Glicoproteínas/química , Glicosilación , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , UDPglucosa 4-Epimerasa/genética , Receptor fas/química
2.
Parasitology ; 142(3): 463-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25124392

RESUMEN

Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 µM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.


Asunto(s)
Fasciola hepatica/enzimología , UDPglucosa 4-Epimerasa/química , Secuencia de Aminoácidos , Animales , Inhibidores Enzimáticos/farmacología , Fasciola hepatica/efectos de los fármacos , Fasciola hepatica/genética , Concentración 50 Inhibidora , Punto Isoeléctrico , Datos de Secuencia Molecular , Multimerización de Proteína , UDPglucosa 4-Epimerasa/antagonistas & inhibidores , UDPglucosa 4-Epimerasa/genética
3.
Carbohydr Res ; 346(15): 2432-6, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21955790

RESUMEN

2-Acetamido-2-deoxy-D-galactose (GalNAc) is a common monosaccharide found in biologically functional sugar chains, but its availability is often limited due to the lack of abundant natural sources. In order to produce GalNAc from abundantly available sugars, 2-acetamido-2-deoxy-D-glucose (GlcNAc) was converted to GalNAc by a one-pot reaction using three enzymes involved in the galacto-N-biose/lacto-N-biose I pathway of bifidobacteria. Starting the reaction with 600 mM GlcNAc, 170 mM GalNAc was produced at equilibrium in the presence of catalytic amounts of ATP and UDP-Glc under optimized conditions. GalNAc was separated from GlcNAc using water-eluting cation-exchange chromatography with a commonly available cation-exchange resin.


Asunto(s)
Acetilgalactosamina/síntesis química , Acetilglucosamina/química , Biocatálisis , Acetilgalactosamina/aislamiento & purificación , Acetilglucosamina/aislamiento & purificación , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Bifidobacterium/enzimología , Cromatografía por Intercambio Iónico , Pruebas de Enzimas , Cinética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , UDPglucosa 4-Epimerasa/química , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/química , Uridina Difosfato Glucosa/química , Uridina Difosfato N-Acetilglucosamina/química
4.
FEBS J ; 275(11): 2862-72, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18445036

RESUMEN

Nitric oxide (NO) is a signaling molecule that affects a myriad of processes in plants. However, the mechanistic details are limited. NO post-translationally modifies proteins by S-nitrosylation of cysteines. The soluble S-nitrosoproteome of a medicinal, crassulacean acid metabolism (CAM) plant, Kalanchoe pinnata, was purified using the biotin switch technique. Nineteen targets were identified by MALDI-TOF mass spectrometry, including proteins associated with carbon, nitrogen and sulfur metabolism, the cytoskeleton, stress and photosynthesis. Some were similar to those previously identified in Arabidopsis thaliana, but kinesin-like protein, glycolate oxidase, putative UDP glucose 4-epimerase and putative DNA topoisomerase II had not been identified as targets previously for any organism. In vitro and in vivo nitrosylation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), one of the targets, was confirmed by immunoblotting. Rubisco plays a central role in photosynthesis, and the effect of S-nitrosylation on its enzymatic activity was determined using NaH14CO3. The NO-releasing compound S-nitrosoglutathione inhibited its activity in a dose-dependent manner suggesting Rubisco inactivation by nitrosylation for the first time.


Asunto(s)
Kalanchoe/metabolismo , Extractos Vegetales/química , Plantas Medicinales/química , Ribulosa-Bifosfato Carboxilasa/antagonistas & inhibidores , Ribulosa-Bifosfato Carboxilasa/química , Arabidopsis/metabolismo , Bioquímica/métodos , Carbono/química , Cisteína/química , ADN-Topoisomerasas de Tipo II/química , Inhibidores Enzimáticos/farmacología , Nitrógeno/química , Fotosíntesis , Proteínas de Plantas/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , UDPglucosa 4-Epimerasa/química
5.
J Eukaryot Microbiol ; 54(2): 154-60, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17403156

RESUMEN

The protozoan parasite Giardia intestinalis has a simple life cycle consisting of an intestinal trophozoite stage and an environmentally resistant cyst stage. The cyst is formed when a trophozoite encases itself within an external filamentous covering, the cyst wall, which is crucial to the cyst's survival outside of the host. The filaments in the cyst wall consist mainly of a beta (1-3) polymer of N-acetylgalactosamine. Its precursor, UDP-N-acetylgalactosamine, is synthesized from fructose 6-phosphate by a pathway of five inducible enzymes. The fifth, UDP-N-acetylglucosamine 4'-epimerase, epimerizes UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine reversibly. The epimerase of G. intestinalis lacks UDP-glucose/UDP-galactose 4'-epimerase activity and shows characteristic amino acyl residues to allow binding of only the larger UDP-N-acetylhexosamines. While the Giardia epimerase catalyzes the reversible epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine, the reverse reaction apparently is favored. The enzyme has a higher Vmax and a smaller Km in this direction. Therefore, an excess of UDP-N-acetylglucosamine is required to drive the reaction towards the synthesis of UDP-N-acetylgalactosamine, when it is needed for cyst wall formation. This forms the ultimate regulatory step in cyst wall biosynthesis.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Giardia lamblia/enzimología , Proteínas Protozoarias/metabolismo , UDPglucosa 4-Epimerasa/metabolismo , Secuencia de Aminoácidos , Animales , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Células Cultivadas , Giardia lamblia/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Especificidad por Sustrato , Trofozoítos/citología , Trofozoítos/metabolismo , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/genética , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo
6.
J Biol Chem ; 280(20): 19728-36, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15767252

RESUMEN

Galactose metabolism is essential in bloodstream form Trypanosoma brucei and is initiated by the enzyme UDP-Glc 4'-epimerase. Here, we show that the parasite epimerase is a homodimer that can interconvert UDP-Glc and UDP-Gal but not UDP-GlcNAc and UDP-GalNAc. The epimerase was localized to the glycosomes by immunofluorescence microscopy and subcellular fractionation, suggesting a novel compartmentalization of galactose metabolism in this organism. The epimerase is encoded by the TbGALE gene and procyclic form T. brucei single-allele knockouts, and conditional (tetracycline-inducible) null mutants were constructed. Under non-permissive conditions, conditional null mutant cultures ceased growth after 8 days and resumed growth after 15 days. The resumption of growth coincided with constitutive re-expression epimerase mRNA. These data show that galactose metabolism is essential for cell growth in procyclic form T. brucei. The epimerase is required for glycoprotein galactosylation. The major procyclic form glycoproteins, the procyclins., were analyzed in TbGALE single-allele knockouts and in the conditional null mutant after removal of tetracycline. The procyclins contain glycosylphosphatidylinositol membrane anchors with large poly-N-acetyl-lactosamine side chains. The single allele knockouts exhibited 30% reduction in procyclin galactose content. This example of haploid insufficiency suggests that epimerase levels are close to limiting in this life cycle stage. Similar analyses of the conditional null mutant 9 days after the removal of tetracycline showed that the procyclins were virtually galactose-free and greatly reduced in size. The parasites compensated, ultimately unsuccessfully, by expressing 10-fold more procyclin. The implications of these data with respect to the relative roles of procyclin polypeptide and carbohydrate are discussed.


Asunto(s)
Galactosa/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , División Celular , Dimerización , Eliminación de Gen , Genes Protozoarios , Microcuerpos/enzimología , Estructura Molecular , Fenotipo , Estructura Cuaternaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo
7.
J Biol Chem ; 279(31): 32796-803, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15175331

RESUMEN

UDP-galactose 4'-epimerase (GALE) interconverts UDP-galactose and UDP-glucose in the final step of the Leloir pathway. Unlike the Escherichia coli enzyme, human GALE (hGALE) also efficiently interconverts a larger pair of substrates: UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. The basis of this differential substrate specificity has remained obscure. Recently, however, x-ray crystallographic data have both predicted essential active site residues and suggested that differential active site cleft volume may be a key factor in determining GALE substrate selectivity. We report here a direct test of this hypothesis. In brief, we have created four substituted alleles: S132A, Y157F, S132A/Y157F, and C307Y-hGALE. While the first three substitutions were predicted to disrupt catalytic activity, the fourth was predicted to reduce active site cleft volume, thereby limiting entry or rotation of the larger but not the smaller substrate. All four alleles were expressed in a null-background strain of Saccharomyces cerevisiae and characterized in terms of activity with regard to both UDP-galactose and UDP-N-acetylgalactosamine. The S132A/Y157F and C307Y-hGALE proteins were also overexpressed in Pichia pastoris and purified for analysis. In all forms tested, the Y157F, S132A, and Y157F/S132A-hGALE proteins each demonstrated a complete loss of activity with respect to both substrates. In contrast, the C307Y-hGALE demonstrated normal activity with respect to UDP-galactose but complete loss of activity with respect to UDP-N-acetylgalactosamine. Together, these results serve to validate the wild-type hGALE crystal structure and fully support the hypothesis that residue 307 acts as a gatekeeper mediating substrate access to the hGALE active site.


Asunto(s)
UDPglucosa 4-Epimerasa/química , Alelos , Sitios de Unión , Catálisis , Cisteína/química , Escherichia coli/metabolismo , Galactosa/química , Humanos , Modelos Biológicos , Modelos Moleculares , Mutación , Pichia/metabolismo , Plásmidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/química , Especificidad por Sustrato , Tirosina/química , Uridina Difosfato N-Acetilgalactosamina/química , Uridina Difosfato N-Acetilglucosamina/química
9.
J Biol Chem ; 277(30): 27528-34, 2002 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-12019271

RESUMEN

UDP-galactose 4-epimerase catalyzes the interconversion of UDP-Gal and UDP-Glc during normal galactose metabolism. The mammalian form of the enzyme, unlike its Escherichia coli counterpart, can also interconvert UDP-GalNAc and UDP-GlcNAc. One key feature of the epimerase reaction mechanism is the rotation of a 4-ketopyranose intermediate in the active site. By comparing the high resolution x-ray structures of both the bacterial and human forms of the enzyme, it was previously postulated that the additional activity in the human epimerase was due to replacement of the structural equivalent of Tyr-299 in the E. coli enzyme with a cysteine residue, thereby leading to a larger active site volume. To test this hypothesis, the Y299C mutant form of the E. coli enzyme was prepared and its three-dimensional structure solved as described here. Additionally, the Y299C mutant protein was assayed for activity against both UDP-Gal and UDP-GalNAc. These studies have revealed that, indeed, this simple mutation did confer UDP-GalNAc/UDP-GlcNAc converting activity to the bacterial enzyme with minimal changes in its three-dimensional structure. Specifically, although the Y299C mutation in the bacterial enzyme resulted in a loss of epimerase activity with regard to UDP-Gal by almost 5-fold, it resulted in a gain of activity against UDP-GalNAc by more than 230-fold.


Asunto(s)
Escherichia coli/enzimología , Mutación , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/genética , Cristalografía por Rayos X , Escherichia coli/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Plásmidos/metabolismo , Conformación Proteica , Tirosina/química , Rayos X
10.
J Biol Chem ; 276(18): 15131-6, 2001 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-11279032

RESUMEN

UDP-galactose 4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose during normal galactose metabolism. One of the key structural features in the proposed reaction mechanism for the enzyme is the rotation of a 4'-ketopyranose intermediate within the active site pocket. Recently, the three-dimensional structure of the human enzyme with bound NADH and UDP-glucose was determined. Unlike that observed for the protein isolated from Escherichia coli, the human enzyme can also turn over UDP-GlcNAc to UDP-GalNAc and vice versa. Here we describe the three-dimensional structure of human epimerase complexed with NADH and UDP-GlcNAc. To accommodate the additional N-acetyl group at the C2 position of the sugar, the side chain of Asn-207 rotates toward the interior of the protein and interacts with Glu-199. Strikingly, in the human enzyme, the structural equivalent of Tyr-299 in the E. coli protein is replaced with a cysteine residue (Cys-307) and the active site volume for the human protein is calculated to be approximately 15% larger than that observed for the bacterial epimerase. This combination of a larger active site cavity and amino acid residue replacement most likely accounts for the inability of the E. coli enzyme to interconvert UDP-GlcNAc and UDP-GalNAc.


Asunto(s)
UDPglucosa 4-Epimerasa/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Sitios de Unión , Escherichia coli/genética , Humanos , Modelos Moleculares , NAD/metabolismo , Conformación Proteica , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/genética , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Glucosa/metabolismo
11.
Biochemistry ; 39(19): 5691-701, 2000 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-10801319

RESUMEN

UDP-galactose 4-epimerase catalyzes the interconversion of UDP-glucose and UDP-galactose during normal galactose metabolism. In humans, deficiencies in this enzyme lead to the complex disorder referred to as epimerase-deficiency galactosemia. Here, we describe the high-resolution X-ray crystallographic structures of human epimerase in the resting state (i.e., with bound NAD(+)) and in a ternary complex with bound NADH and UDP-glucose. Those amino acid side chains responsible for anchoring the NAD(+) to the protein include Asp 33, Asn 37, Asp 66, Tyr 157, and Lys 161. The glucosyl group of the substrate is bound to the protein via the side-chain carboxamide groups of Asn 187 and Asn 207. Additionally, O(gamma) of Ser 132 and O(eta) of Tyr 157 lie within 2.4 and 3.1 A, respectively, of the 4'-hydroxyl group of the sugar. Comparison of the polypeptide chains for the resting enzyme and for the protein with bound NADH and UDP-glucose demonstrates that the major conformational changes which occur upon substrate binding are limited primarily to the regions defined by Glu 199 to Asp 240 and Gly 274 to Tyr 308. Additionally, this investigation reveals for the first time that a conserved tyrosine, namely Tyr 157, is in the proper position to interact directly with the 4'-hydroxyl group of the sugar substrate and to thus serve as the active-site base. A low barrier hydrogen bond between the 4'-hydroxyl group of the sugar and O(gamma) of Ser 132 facilitates proton transfer from the sugar 4'-hydroxyl group to O(eta) of Tyr 157.


Asunto(s)
Tirosina/química , UDPglucosa 4-Epimerasa/química , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Humanos , Enlace de Hidrógeno , Modelos Moleculares , NAD/química , Pichia/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , UDPglucosa 4-Epimerasa/genética , Uridina Difosfato/química , Uridina Difosfato Glucosa/química
12.
Arch Biochem Biophys ; 369(1): 30-41, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10462438

RESUMEN

Sulfolipids of photosynthetic bacteria and plants are characterized by their unique sulfoquinovose headgroup, a derivative of glucose in which the 6-hydroxyl group is replaced by a sulfonate group. These sulfolipids have been discussed as promising anti-tumor and anti-HIV therapeutics based on their inhibition of DNA polymerase and reverse transcriptase. To study sulfolipid biosynthesis, in particular the formation of UDP-sulfoquinovose, we have combined computational modeling with biochemical methods. A database search was performed employing the derived amino acid sequence from SQD1, a gene involved in sulfolipid biosynthesis of Arabidopsis thaliana. This sequence shows high similarity to other sulfolipid biosynthetic proteins of different organisms and also to sugar nucleotide modifying enzymes, including UDP-glucose epimerase and dTDP-glucose dehydratase. Additional biochemical data on the purified SQD1 protein suggest that it is involved in the formation of UDP-sulfoquinovose, the first step of sulfolipid biosynthesis. To understand which aspects of epimerase catalysis may be shared by SQD1, we built a three-dimensional model of SQD1 using the 1.8 A crystallographic structure of UDP-glucose 4-epimerase as a template. This model predicted an NAD(+) binding site, and the binding of NAD(+) was subsequently confirmed by enzymatic assay and mass spectrometry. The active-site interactions together with biochemical data provide the basis for proposing a reaction mechanism for UDP-sulfoquinovose formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Lípidos/biosíntesis , NAD/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Bases de Datos Factuales , Escherichia coli/enzimología , Hidroliasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , UDPglucosa 4-Epimerasa/química , Uridina Difosfato Glucosa/metabolismo
13.
Vet Microbiol ; 65(1): 21-36, 1999 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-10068125

RESUMEN

The galE gene of Streptomyces lividans was used to probe a cosmid library harbouring Brucella melitensis 16M DNA and the nucleotide sequence of a 2.5 kb ClaI fragment which hybridised was determined. An open reading frame encoding a predicted polypeptide with significant homology to UDP-galactose-4-epimerases of Brucella arbortus strain 2308 and other bacterial species was identified. DNA sequences flanking the B. melitensis galE gene shared no identity with other gal genes and, as for B. abortus, were located adjacent to a mazG homologue. A plasmid which encoded the B. melitensis galE open reading frame complemented a galE mutation in Salmonella typhimurium LB5010, as shown by the restoration of smooth lipopolysaccharide (LPS) biosynthesis, sensitivity to phage P22 infection and restoration of UDP-galactose-4-epimerase activity. The galE gene on the B. melitensis 16M chromosome was disrupted by insertional inactivation and these mutants lacked UDP-galactose-4-epimerase activity but no discernible differences in LPS structure between parent and the mutants were observed. One B. melitensis 16M galE mutant, Bm92, was assessed for virulence in CD-1 and BALB/c mice and displayed similar kinetics of invasion and persistence in tissues compared with the parent bacterial strain. CD-1 mice immunised with B. melitensis 16M galE were protected against B. melitensis 16M challenge.


Asunto(s)
Brucella melitensis/genética , Genes Bacterianos/inmunología , UDPglucosa 4-Epimerasa/genética , Secuencia de Aminoácidos , Animales , Bacteriófago P22 , Southern Blotting , Brucella melitensis/enzimología , Brucella melitensis/inmunología , Brucelosis/inmunología , Brucelosis/microbiología , Brucelosis/veterinaria , Clonación Molecular , Recuento de Colonia Microbiana , Cartilla de ADN/química , ADN Bacteriano/química , Femenino , Lipopolisacáridos/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Mutantes , Datos de Secuencia Molecular , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , Distribución Aleatoria , Alineación de Secuencia , Análisis de Secuencia de ADN , Bazo/microbiología , UDPglucosa 4-Epimerasa/análisis , UDPglucosa 4-Epimerasa/química
14.
Biochemistry ; 36(21): 6294-304, 1997 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-9174344

RESUMEN

UDP-galactose 4-epimerase from Escherichia coli catalyzes the interconversion of UDP-galactose and UDP-glucose through the transient reduction of the tightly bound cofactor NAD+. The enzyme is unique among the NAD+-dependent enzymes in that it promotes stereospecific reduction of the cofactor but nonstereospecific hydride return during normal catalysis. In addition to hydride transfer, the reaction mechanism of epimerase involves two key features: the abstraction of a proton from the 4'-hydroxyl group of glucose or galactose by an active site base and the rotation of a 4-ketopyranose intermediate in the active site pocket. To address the second issue of movement within the active site, the X-ray structures of reduced epimerase complexed with UDP-mannose, UDP-4-deoxy-4-fluoro-alpha-D-galactose, or UDP-4-deoxy-4-fluoro-alpha-D-glucose have been determined and refined to 1.65, 1.8, and 1.65 A resolution, respectively. A comparison of these models to that of the previously determined epimerase/NADH/UDP-glucose abortive complex reveals that the active site accommodates the various sugars by simple rearrangements of water molecules rather than by large changes in side chain conformations. In fact, the polypeptide chains for all of the epimerase/NADH/UDP-sugar complexes studied thus far are remarkably similar and can be superimposed with root-mean-square deviations of not greater than 0.24 A. The only significant differences between the various enzyme/UDP-sugar models occur in two of the dihedral angles defining the conformation of the UDP-sugar ligands.


Asunto(s)
Escherichia coli/enzimología , UDPglucosa 4-Epimerasa/química , Uridina Difosfato Galactosa/química , Uridina Difosfato Glucosa/química , Uridina Difosfato/química , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Sustancias Macromoleculares , NAD/química , NAD/metabolismo , Especificidad por Sustrato , UDPglucosa 4-Epimerasa/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Glucosa/metabolismo , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA