Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
J Orthop Surg Res ; 19(1): 356, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879525

RESUMEN

BACKGROUND: Ubiquitin/ubiquitin-like (Ub/UBL)-related genes have been reported to be associated with the survival of osteosarcoma patients but have not yet been systematically explored. METHODS: The prognostic value of Ub/UBL-related genes, immune cell infiltration and clinicopathological features of patients were explored by Cox and LASSO regression analyses. A prognostic model was established and then validated in the GSE21257 dataset. The differential expression of hub genes in osteosarcoma was confirmed by qRT-PCR, western blotting and immunohistochemistry. RESULTS: Tripartite Motif Containing 8 (TRIM8) and Ubiquitin Like With PHD And Ring Finger Domains 2 (UHRF2) were screened as genes with prognostic value in osteosarcoma. Kaplan-Meier analysis and scatter plots indicated that patients in the high gene significance score group tended to have a worse prognosis. The concordance index, calibration analysis and receiver operating characteristic analysis suggested that the model had good prediction accuracy and high sensitivity and specificity. Decision curve analysis revealed that patients could obtain greater net benefit from this model. Functional analyses of the differentially expressed genes indicated that they were involved in important functions and pathways. TRIM8 and UHRF2 were confirmed to be highly expressed in osteosarcoma cell lines and tissues. CONCLUSIONS: TRIM8 and UHRF2 are potential prognostic genes in osteosarcoma, and these results provide insights into the roles of these genes and their implications for patient outcomes.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/inmunología , Osteosarcoma/mortalidad , Humanos , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/inmunología , Neoplasias Óseas/mortalidad , Masculino , Femenino , Biomarcadores de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética
2.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38572758

RESUMEN

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Asunto(s)
Péptido Hidrolasas , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Péptido Hidrolasas/metabolismo , Ubiquitinación , Procesamiento Proteico-Postraduccional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Daño del ADN , Endopeptidasas/metabolismo , Inestabilidad Genómica
3.
J Transl Med ; 22(1): 216, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424632

RESUMEN

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription­quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Ligasas/genética , Ligasas/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación
4.
EMBO J ; 43(2): 250-276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177505

RESUMEN

Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.


Asunto(s)
Péptidos , Enzimas Activadoras de Ubiquitina , Ubiquitina , Humanos , Animales , Ratones , Ubiquitinación , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Mutación
5.
J Mol Med (Berl) ; 102(3): 337-351, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38289385

RESUMEN

N6 methyladenosine (m6A) is the most prevalent RNA epigenetic modification, regulated by methyltransferases and demethyltransferases and recognized by methylation-related reading proteins to impact mRNA splicing, translocation, stability, and translation efficiency. It significantly affects a variety of activities, including stem cell maintenance and differentiation, tumor formation, immune regulation, and metabolic disorders. Ubiquitination refers to the specific modification of target proteins by ubiquitin molecule in response to a series of enzymes. E3 ligases connect ubiquitin to target proteins and usually lead to protein degradation. On the contrary, deubiquitination induced by deubiquitinating enzymes (DUBs) can separate ubiquitin and regulate the stability of protein. Recent studies have emphasized the potential importance of ubiquitination and deubiquitination in controlling the function of m6A modification. In this review, we discuss the impact of ubiquitination and deubiquitination on m6A functional molecules in diseases, such as metabolism, cellular stress, and tumor growth.


Asunto(s)
Adenosina/análogos & derivados , Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética , Proteínas/genética , Neoplasias/metabolismo
6.
Cold Spring Harb Protoc ; 2024(4): pdb.over107784, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36997275

RESUMEN

The ubiquitin signaling cascade plays a crucial role in human cells. Consistent with this, malfunction of ubiquitination and deubiquitination is implicated in the initiation and progression of numerous human diseases, including cancer. Therefore, the development of potent and specific modulators of ubiquitin signal transduction has been at the forefront of drug development. In the past decade, a structure-based combinatorial protein-engineering approach has been used to generate ubiquitin variants (UbVs) as protein-based modulators of multiple components in the ubiquitin-proteasome system. Here, we review the design and generation of phage-displayed UbV libraries, including the processes of binder selection and library improvement. We also provide a comprehensive overview of the general in vitro and cellular methodologies involved in characterizing UbV binders. Finally, we describe two recent applications of UbVs for developing molecules with therapeutic potential.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Transducción de Señal
7.
J Gastroenterol Hepatol ; 39(3): 596-607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059880

RESUMEN

BACKGROUND AND AIM: Circular ubiquitin-like, containing PHD and ring finger domains 1 (circUHRF1) is aberrantly upregulated in human hepatocellular carcinoma (HCC) tissues. However, the underlying molecular mechanisms remain obscure. The present study aimed at elucidating the interactive function of circUHRF1-G9a-ubiquitin-like, containing PHD and ring finger domains 1 (UHRF1) mRNA-eukaryotic translation initiation factor 4A3 (EIF4A3)-PDZ and LIM domain 1 (PDLIM1) network in HCC. METHODS: Expression of circUHRF1, mRNAs of G9a, UHRF1, PDLIM1, epithelial-mesenchymal transition (EMT)-related proteins, and Hippo-Yap pathway components was determined by quantitative polymerase chain reaction (Q-PCR), immunofluorescence, or Western blot analysis. Tumorigenic and metastatic capacities of HCC cells were examined by cellular assays including Cell Counting Kit-8, colony formation, wound healing, and transwell assays. Molecular interactions between EIF4A3 and UHRF1 mRNA were detected by RNA pull-down experiment. Complex formation between UHRF1 and PDLIM1 promoter was detected by chromatin immunoprecipitation assay. Co-immunoprecipitation was performed to examine the binding between UHRF1 and G9a. RESULTS: Circular ubiquitin-like, containing PHD and ring finger domains 1, G9a, and UHRF1 were upregulated, while PDLIM1 was downregulated in HCC tissue samples and cell lines. Cellular silencing of circUHRF1 repressed HCC proliferation, invasion, migration, and EMT. G9a formed a complex with UHRF1 and inhibited PDLIM1 transcription. CONCLUSION: Eukaryotic translation initiation factor 4A3 regulated circUHRF1 expression by binding to UHRF1 mRNA promoter. circUHRF1 increased the stability of G9a and UHRF1 mRNAs through recruiting EIF4A3. Overexpression of circUHRF1 aggravated HCC progression through Hippo-Yap pathway and PDLIM1 inhibition. By elucidating the molecular function of circUHRF1-G9a-UHRF1 mRNA-EIF4A3-PDLIM1 network, our data shed light on the HCC pathogenesis and suggest a novel therapeutic strategy for future HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , ARN Helicasas DEAD-box , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , ARN Mensajero/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/uso terapéutico , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina/uso terapéutico , Dominios RING Finger , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/uso terapéutico , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo
8.
Mol Cell Probes ; 73: 101944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049041

RESUMEN

Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.


Asunto(s)
Endopeptidasas , Neoplasias , Humanos , Proliferación Celular , Endopeptidasas/genética , Endopeptidasas/metabolismo , Neoplasias/genética , Ubiquitina/genética , Ubiquitina/metabolismo
9.
Biomolecules ; 13(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136595

RESUMEN

BACKGROUND: Ovarian cancer (OV) is associated with high mortality and poses challenges in diagnosis and prognosis prediction. Ubiquitin-related genes (UbRGs) are involved in the initiation and progression of cancers, but have still not been utilized for diagnosis and prognosis of OV. METHODS: K48-linked ubiquitination in ovarian tissues from our OV and control cohort was assessed using immunohistochemistry. UbRGs, including ubiquitin and ubiquitin-like regulators, were screened based on the TCGA-OV and GTEx database. Univariate Cox regression analysis identified survival-associated UbRGs. A risk model was established using the LASSO regression and multivariate Cox regression analysis. The relationship between UbRGs and immune cell infiltration, tumor mutational burden, drug sensitivity, and immune checkpoint was determined using the CIBERSORT, ESTIMATE, and Maftools algorithms, based on the Genomics of Drug Sensitivity in Cancer and TCGA-OV databases. GEPIA2.0 was used to analyze the correlation between FBXO9/UBD and DNA damage repair-related genes. Finally, FBXO9 and UBD were accessed in tissues or cells using immunohistochemistry, qPCR, and Western blot. RESULTS: We confirmed the crucial role for ubiquitination in OV as a significant decrease of K48-linked ubiquitination was observed in primary OV lesions. We identified a prognostic signature utilizing two specific UbRGs, FBXO9 and UBD. The risk score obtained from this signature accurately predicted the overall survival of TCGA-OV training dataset and GSE32062 validation dataset. Furthermore, this risk score also showed association with immunocyte infiltration and drug sensitivity, revealing potential mechanisms for ubiquitination mediated OV risk. In addition, FBXO9, but not UBD, was found to be downregulated in OV and positively correlated with DNA damage repair pathways, suggesting FBXO9 as a potential cancer suppressor, likely via facilitating DNA damage repair. CONCLUSIONS: We identified and validated a signature of UbRGs that accurately predicts the prognosis, offers valuable guidance for optimizing chemotherapy and targeted therapies, and suggests a potential role for FBXO9 in OV.


Asunto(s)
Neoplasias Ováricas , Ubiquitina , Humanos , Femenino , Pronóstico , Ubiquitina/genética , Neoplasias Ováricas/genética , Ubiquitinación , Algoritmos
10.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894717

RESUMEN

The Atg12 protein in yeast is an indispensable polypeptide in the highly conserved ubiquitin-like conjugation system operating in the macroautophagy/autophagy pathway. Atg12 is covalently conjugated to Atg5 through the action of Atg7 and Atg10; the Atg12-Atg5 conjugate binds Atg16 to form an E3 ligase that functions in a separate conjugation pathway involving Atg8. Atg12 is comprised of a ubiquitin-like (UBL) domain preceded at the N terminus by an intrinsically disordered protein region (IDPR), a domain that comprises a major portion of the protein but remains elusive in its conformation and function. Here, we show that the IDPR in unconjugated Atg12 is positioned in proximity to the UBL domain, a configuration that is important for the functional structure of the protein. A major deletion in the IDPR disrupts intactness of the UBL domain at the unconjugated C terminus, and a mutation in the predicted α0 helix in the IDPR prevents Atg12 from binding to Atg7 and Atg10, which ultimately affects the protein function in the ubiquitin-like conjugation cascade. These findings provide evidence that the IDPR is an indispensable part of the Atg12 protein from yeast.


Asunto(s)
Proteína 12 Relacionada con la Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Proteína 5 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
11.
SLAS Discov ; 28(8): 365-375, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579950

RESUMEN

Ubiquitination is a reversible protein post-translational modification in which consequent enzymatic activity results in the covalent linking of ubiquitin to a target protein. Once ubiquitinated, a protein can undergo multiple rounds of ubiquitination on multiple sites or form poly-ubiquitin chains. Ubiquitination regulates various cellular processes, and dysregulation of ubiquitination has been associated with more than one type of cancer. Therefore, efforts have been carried out to identify modulators of the ubiquitination cascade. Herein, we present the development of a FRET-based assay that allows us to monitor ubiquitination activity of DTX3L, a RING-type E3 ubiquitin ligase. Our method shows a good signal window with a robust average Z' factor of 0.76 on 384-well microplates, indicating a good assay for screening inhibitors in a high-throughput setting. From a validatory screening experiment, we have identified the first molecules that inhibit DTX3L with potencies in the low micromolar range. We also demonstrate that the method can be expanded to study deubiquitinases, such as USP28, that reduce FRET due to hydrolysis of fluorescent poly-ubiquitin chains.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Ubiquitina , Transferencia Resonante de Energía de Fluorescencia/métodos , Ubiquitinación , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Procesamiento Proteico-Postraduccional
12.
Biophys Chem ; 300: 107070, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37339533

RESUMEN

The BRCA1-BARD1 complex is a crucial tumor suppressor E3 ubiquitin ligase involved in DNA double-stranded break repair. The BRCA1-BARD1 RING domains interact with UBE2D3 through the BRCA1 interface and this complex flexibly tether to the nucleosome core particle (NCP), where BRCA1 and BARD1 interacts with histone H2A and H2B of NCP. Mutations in the BRCA1-BARD1 RING domains have been linked to familial breast and ovarian cancer. Seven mutations were analyzed to understand their effect on the binding interface of protein partners and changes in conformational dynamics. Molecular dynamics simulations revealed that mutant complexes were less conformationally flexible than the wildtype complex. Protein-protein interaction profiling showed the importance of specific molecular interactions, hotspot and hub residues, and some of these were lost in the mutant complexes. Two mutations (BRCA1L51W-K65R and BARD1C53W) hindered significant interaction between protein partners and may prevent signaling for ubiquitination of histones in NCP and other cellular targets. The structural compactness and reduced significant interaction in mutant complexes may be the possible reason of preventing ubiquitination and hinder DNA repair, resulting cancer.


Asunto(s)
Nucleosomas , Proteínas Supresoras de Tumor , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/genética , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Histonas/genética
13.
J Exp Bot ; 74(18): 5635-5652, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37368909

RESUMEN

Extensins are hydroxyproline-rich glycoproteins and generally play a structural role in cell wall integrity. In this study, we determined a novel role of tomato (Solanum lycopersicum) SENESCENCE-ASSOCIATED EXTENSIN1 (SAE1) in leaf senescence. Both gain- and loss-of-function analyses suggest that SAE1 plays a positive role in leaf senescence in tomato. Transgenic plants overexpressing SAE1 (SAE1-OX) exhibited premature leaf senescence and enhanced dark-induced senescence, whereas SAE1 knockout (SAE1-KO) plants displayed delayed development-dependent and dark-induced leaf senescence. Heterologous overexpression of SlSAE1 in Arabidopsis also led to premature leaf senescence and enhanced dark-induced senescence. In addition, the SAE1 protein was found to interact with the tomato ubiquitin ligase SlSINA4, and SlSINA4 promoted SAE1 degradation in a ligase-dependent manner when co-expressed in Nicotiana benthamiana leaves, suggesting that SlSINA4 controls SAE1 protein levels via the ubiquitin-proteasome pathway. Introduction of an SlSINA4-overexpression construct into the SAE1-OX tomato plants consistently completely eliminated accumulation of the SAE1 protein and suppressed the phenotypes conferred by overexpression of SAE1. Taken together, our results suggest that the tomato extensin SAE1 plays a positive role in leaf senescence and is regulated by the ubiquitin ligase SINA4.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Ubiquitina/genética , Solanum lycopersicum/genética , Ligasas/genética , Senescencia de la Planta , Arabidopsis/genética , Hojas de la Planta , Regulación de la Expresión Génica de las Plantas
14.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119526, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364618

RESUMEN

The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.


Asunto(s)
Proteínas F-Box , Proteínas de Saccharomyces cerevisiae , Animales , ADN , Reparación del ADN/genética , Proteínas F-Box/genética , Mamíferos/genética , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
15.
J Biochem ; 174(2): 99-107, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37279649

RESUMEN

In addition to its role in the ubiquitin-proteasome system of protein degradation, polyubiquitination is involved in the regulation of intracellular events. Depending on the type of ubiquitin-ubiquitin linkage used, polyubiquitin can assume several types of structures. The spatiotemporal dynamics of polyubiquitin involve multiple adaptor proteins and induce different downstream outputs. Linear ubiquitination, in which the N-terminal methionine on the acceptor ubiquitin serves as the site for ubiquitin-ubiquitin conjugation, is a rare and atypical type of polyubiquitin modification. The production of linear ubiquitin chains is dependent on various external inflammatory stimuli and leads to the transient activation of the downstream NF-κB signalling pathway. This in turn suppresses extrinsic programmed cell death signals and protects cells from activation-induced cell death under inflammatory conditions. Recent evidence has revealed the role of linear ubiquitination in various biological processes under both physiological and pathological conditions. This led us to propose that linear ubiquitination may be pivotal in the 'inflammatory adaptation' of cells, and consequently in tissue homeostasis and inflammatory disease. In this review, we focused on the physiological and pathophysiological roles of linear ubiquitination in vivo in response to a changing inflammatory microenvironment.


Asunto(s)
Poliubiquitina , Ubiquitina , Poliubiquitina/metabolismo , Ubiquitinación , Ubiquitina/genética , Ubiquitina/metabolismo , FN-kappa B/metabolismo , Homeostasis , Ubiquitina-Proteína Ligasas/metabolismo
16.
Hum Mol Genet ; 32(14): 2386-2398, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37220877

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that share pathological features, including the aberrant accumulation of ubiquitinated protein inclusions within motor neurons. Previously, we have shown that the sequestration of ubiquitin (Ub) into inclusions disrupts Ub homeostasis in cells expressing ALS-associated variants superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43). Here, we investigated whether an ALS/FTD-linked pathogenic variant in the CCNF gene, encoding the E3 Ub ligase Cyclin F (CCNF), also perturbs Ub homeostasis. The presence of a pathogenic CCNF variant was shown to cause ubiquitin-proteasome system (UPS) dysfunction in induced pluripotent stem cell-derived motor neurons harboring the CCNF  S621G mutation. The expression of the CCNFS621G variant was associated with an increased abundance of ubiquitinated proteins and significant changes in the ubiquitination of key UPS components. To further investigate the mechanisms responsible for this UPS dysfunction, we overexpressed CCNF in NSC-34 cells and found that the overexpression of both wild-type (WT) and the pathogenic variant of CCNF (CCNFS621G) altered free Ub levels. Furthermore, double mutants designed to decrease the ability of CCNF to form an active E3 Ub ligase complex significantly improved UPS function in cells expressing both CCNFWT and the CCNFS621G variant and were associated with increased levels of free monomeric Ub. Collectively, these results suggest that alterations to the ligase activity of the CCNF complex and the subsequent disruption to Ub homeostasis play an important role in the pathogenesis of CCNF-associated ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Ciclinas/genética , Neuronas Motoras/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Pick/metabolismo , Homeostasis/genética , Mutación
17.
Biofactors ; 49(4): 782-819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37162294

RESUMEN

Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.


Asunto(s)
Neoplasias Encefálicas , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
18.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958824

RESUMEN

The phylum Apicomplexa contains several parasitic species of medical and agricultural importance. The ubiquitination machinery remains, for the most part, uncharacterised in apicomplexan parasites, despite the important roles that it plays in eukaryotic biology. Bioinformatic analysis of the ubiquitination machinery in apicomplexan parasites revealed an expanded ovarian tumour domain-containing (OTU) deubiquitinase (DUB) family in Toxoplasma, potentially reflecting functional importance in apicomplexan parasites. This study presents comprehensive characterisation of Toxoplasma OTU DUBs. AlphaFold-guided structural analysis not only confirmed functional orthologues found across eukaryotes, but also identified apicomplexan-specific enzymes, subsequently enabling discovery of a cryptic OTU DUB in Plasmodium species. Comprehensive biochemical characterisation of 11 Toxoplasma OTU DUBs revealed activity against ubiquitin- and NEDD8-based substrates and revealed ubiquitin linkage preferences for Lys6-, Lys11-, Lys48-, and Lys63-linked chain types. We show that accessory domains in Toxoplasma OTU DUBs impose linkage preferences, and in case of apicomplexan-specific TgOTU9, we discover a cryptic ubiquitin-binding domain that is essential for TgOTU9 activity. Using the auxin-inducible degron (AID) to generate knockdown parasite lines, TgOTUD6B was found to be important for Toxoplasma growth.


Asunto(s)
Plasmodium , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo
19.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36749630

RESUMEN

The tumor suppressor TP53 is the most frequently mutated gene in human cancers. Mutant p53 (mutp53) proteins often accumulate to very high levels in human cancers to promote cancer progression through the gain-of-function (GOF) mechanism. Currently, the mechanism underlying mutp53 accumulation and GOF is incompletely understood. Here, we identified TRIM21 as a critical E3 ubiquitin ligase of mutp53 by screening for specific mutp53-interacting proteins. TRIM21 directly interacted with mutp53 but not WT p53, resulting in ubiquitination and degradation of mutp53 to suppress mutp53 GOF in tumorigenesis. TRIM21 deficiency in cancer cells promoted mutp53 accumulation and GOF in tumorigenesis. Compared with p53R172H knockin mice, which displayed mutp53 accumulation specifically in tumors but not normal tissues, TRIM21 deletion in p53R172H knockin mice resulted in mutp53 accumulation in normal tissues, an earlier tumor onset, and a shortened life span of mice. Furthermore, TRIM21 was frequently downregulated in some human cancers, including colorectal and breast cancers, and low TRIM21 expression was associated with poor prognosis in patients with cancers carrying mutp53. Our results revealed a critical mechanism underlying mutp53 accumulation in cancers and also uncovered an important tumor-suppressive function of TRIM21 and its mechanism in cancers carrying mutp53.


Asunto(s)
Mutación con Ganancia de Función , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Mutación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
Vet Microbiol ; 278: 109660, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657343

RESUMEN

The pro- and inflammatory cytokines fail to effectively inhibit FAdV-4, which has always puzzled us. In the current study, the data determined that the mRNA levels of interferons were significantly enhanced in the livers and LMH cells from 24 h to 72 h post FAdV-4 infection. But the viral load of FAdV-4 was still significantly increased, which meant that FAdV-4 evaded innate immune response. We additionally revealed that the protein levels not mRNA levels of PKR were degraded in host cell at 48 h post FAdV-4 infection. Moreover, the results of over expression and silent expression of PKR revealed that PKR could inhibit FAdV-4 proliferation. These results indicated that FAdV-4 degraded the protein levels of PKR to evade innate immune response. We also found that the protein degradation levels of PKR induced by FAdV-4 were recovery in LHM cells after treatment with proteasome inhibitor MG132, and ubiquitin-specific proteases inhibitor DUB-IN-1. Furthermore, our current data presented that FAdV-4 52/55 K protein directly interacted with PKR and degraded it determined by Co-immunoprecipitation and immunofluorescence. We also determined that 52/55 K protein triggered PKR degradation, and the degradation of PKR could be recovery in LHM cells after treatment with MG132, or DUB-IN-1, respectively. Finally, our data demonstrated that 52/55 K protein was a ubiquitylase that could directly degrade PKR protein in host cells via the ubiquitin-proteasome pathway. Therefore, the current study firstly revealed that FAdV-4 52/55 K protein played the key role in triggering PKR degradation by ubiquitin-proteasome system pathway to escape from innate immunity response.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Enfermedades de las Aves de Corral , Animales , Complejo de la Endopetidasa Proteasomal/genética , Infecciones por Adenoviridae/veterinaria , Ubiquitina/genética , Serogrupo , Pollos , Aviadenovirus/genética , Proteínas Virales/genética , Inmunidad Innata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA