Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
1.
Handb Clin Neurol ; 200: 283-305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494283

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.


Asunto(s)
Miastenia Gravis , Femenino , Humanos , Masculino , Autoanticuerpos , Electromiografía , Inmunosupresores , Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Unión Neuromuscular/metabolismo
2.
Hum Mol Genet ; 33(11): 935-944, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38382647

RESUMEN

Many genes with distinct molecular functions have been linked to genetically heterogeneous amyotrophic lateral sclerosis (ALS), including SuperOxide Dismutase 1 (SOD1) and Valosin-Containing Protein (VCP). SOD1 converts superoxide to oxygen and hydrogen peroxide. VCP acts as a chaperon to regulate protein degradation and synthesis and various other cellular responses. Although the functions of these two genes differ, in the current report we show that overexpression of wild-type VCP in mice enhances lifespan and maintains the size of neuromuscular junctions (NMJs) of both male and female SOD1G93A mice, a well-known ALS mouse model. Although VCP exerts multiple functions, its regulation of ER formation and consequent protein synthesis has been shown to play the most important role in controlling dendritic spine formation and social and memory behaviors. Given that SOD1 mutation results in protein accumulation and aggregation, it may direct VCP to the protein degradation pathway, thereby impairing protein synthesis. Since we previously showed that the protein synthesis defects caused by Vcp deficiency can be improved by leucine supplementation, to confirm the role of the VCP-protein synthesis pathway in SOD1-linked ALS, we applied leucine supplementation to SOD1G93A mice and, similar to Vcp overexpression, we found that it extends SOD1G93A mouse lifespan. In addition, the phenotypes of reduced muscle strength and fewer NMJs of SOD1G93A mice are also improved by leucine supplementation. These results support the existence of crosstalk between SOD1 and VCP and suggest a critical role for protein synthesis in ASL. Our study also implies a potential therapeutic treatment for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Leucina , Longevidad , Ratones Transgénicos , Unión Neuromuscular , Fenotipo , Superóxido Dismutasa-1 , Proteína que Contiene Valosina , Animales , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Ratones , Unión Neuromuscular/metabolismo , Femenino , Masculino , Longevidad/genética , Leucina/farmacología , Leucina/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo
3.
Sci Rep ; 14(1): 1780, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245592

RESUMEN

The neuromuscular junction (NMJ)-formed between a motor nerve terminal and skeletal muscle fiber-plays an important role in muscle contraction and other muscle functions. Aging and neurodegeneration worsen NMJ formation and impair muscle function. Downstream of tyrosine kinase-7 (Dok-7), expressed in skeletal muscle fibers, is essential for the formation of NMJ. Exercise increases the expression of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) in skeletal muscles and restores NMJ formation. In this study, we used skeletal muscle-specific PGC1α knockout or overexpression mice to examine the role of PGC1α in regulating Dok-7 expression and NMJ formation. Our findings revealed that Dok-7 expression is regulated by PGC1α, and luciferase activity of the Dok-7 promoter is greatly increased by coexpressing PGC1α and estrogen receptor-related receptor α. Thus, we suggest PGC1α is involved in exercise-mediated restoration of NMJ formation.


Asunto(s)
Unión Neuromuscular , PPAR gamma , Animales , Ratones , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , PPAR gamma/metabolismo , Proteínas Tirosina Quinasas/metabolismo
4.
Biochem Pharmacol ; 218: 115872, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865142

RESUMEN

Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.


Asunto(s)
Miastenia Gravis , Proteínas Tirosina Quinasas Receptoras , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/diagnóstico , Unión Neuromuscular/metabolismo , Autoanticuerpos/metabolismo , Inmunoterapia
5.
Neuroscience ; 532: 103-112, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37778690

RESUMEN

At the vertebrate neuromuscular junction (NMJ), presynaptic homeostatic potentiation (PHP) refers to an increase in neurotransmitter release that restores the strength of synaptic transmission following a blockade of nicotinic acetylcholine receptors (nAChRs). Mechanisms informing the presynaptic terminal of the loss of postsynaptic receptivity remain poorly understood. Previous research at the mouse NMJ suggests that extracellular protons may function as a retrograde signal that triggers an upregulation of neurotransmitter output (measured by quantal content, QC) through the activation of acid-sensing ion channels (ASICs). We further investigated the pH-dependency of PHP in an ex-vivo mouse muscle preparation. We observed that increasing the buffering capacity of the perfusion saline with HEPES abolishes PHP and that acidifying the saline from pH 7.4 to pH 7.2-7.1 increases QC, demonstrating the necessity and sufficiency of extracellular acidification for PHP. We then sought to uncover how the blockade of nAChRs leads to the pH decrease. Plasma-membrane calcium ATPase (PMCA), a calcium-proton antiporter, is known to alkalize the synaptic cleft following neurotransmission in a calcium-dependent manner. We hypothesize that since nAChR blockade reduces postsynaptic calcium entry, it also reduces the alkalizing activity of the PMCA, thereby causing acidosis, ASIC activation, and QC upregulation. In line with this hypothesis, we found that pharmacological inhibition of the PMCA with carboxyeosin induces QC upregulation and that this effect requires functional ASICs. We also demonstrated that muscles pre-treated with carboxyeosin fail to generate PHP. These findings suggest that reduced PMCA activity causes presynaptic homeostatic potentiation by activating ASICs at the mouse NMJ.


Asunto(s)
Calcio , Unión Neuromuscular , Animales , Ratones , Calcio/metabolismo , Unión Neuromuscular/metabolismo , Transmisión Sináptica , Terminales Presinápticos/metabolismo , Canales Iónicos Sensibles al Ácido , Neurotransmisores/farmacología , Concentración de Iones de Hidrógeno , ATPasas Transportadoras de Calcio/farmacología
6.
Muscle Nerve ; 68(5): 798-804, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37705312

RESUMEN

INTRODUCTION/AIMS: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction (NMJ) of skeletal muscle. Complement activation is one of the mechanisms by which anti-acetylcholine receptor (anti-AChR) autoantibodies reduce synaptic transmission at the NMJ. In this study, we aimed to examine the activation of the complement pathways, including the classical pathway, as potential contributors to the pathogenesis of MG with anti-AChR antibodies. METHODS: In this single-center, observational study of 45 patients with anti-AChR-antibody-positive generalized MG, serum concentrations of major components of the complement pathways, including C1q, C5, C5a, soluble C5b-9 (sC5b-9), Ba, and complement factor H, were measured using an enzyme-linked immunosorbent assay. A total of 25 patients with a non-inflammatory neurological disorder served as controls. In addition, the relationships of complement activation with clinical characteristics were examined. RESULTS: The patients with MG exhibited lower serum levels of C5 (p = .0001) and higher serum levels of sC5b-9 (p = .004) compared with the control group. At about 6 months (range, 172-209 days) after the start of immunotherapy, serum levels of Ba were significantly higher than baseline levels (p = .002) and were associated with improvement in MG clinical scores. DISCUSSION: Herein, we provide evidence for the activation of the classical complement pathway and its association with disease activity in anti-AChR-antibody-positive generalized MG.


Asunto(s)
Vía Clásica del Complemento , Miastenia Gravis , Humanos , Receptores Colinérgicos , Autoanticuerpos , Unión Neuromuscular/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento
7.
G3 (Bethesda) ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757863

RESUMEN

At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Sinapsis/genética , Unión Neuromuscular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas Motoras/metabolismo , Péptidos
8.
J Neuromuscul Dis ; 10(5): 761-776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522215

RESUMEN

Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neuromusculares , Adulto , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Músculo Esquelético , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Enfermedades Neuromusculares/terapia , Enfermedades Neuromusculares/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240237

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscular disorder caused by mutations in the dystrophin gene. It leads to respiratory and cardiac failure and premature death at a young age. Although recent studies have greatly deepened the understanding of the primary and secondary pathogenetic mechanisms of DMD, an effective treatment remains elusive. In recent decades, stem cells have emerged as a novel therapeutic product for a variety of diseases. In this study, we investigated nonmyeloablative bone marrow cell (BMC) transplantation as a method of cell therapy for DMD in an mdx mouse model. By using BMC transplantation from GFP-positive mice, we confirmed that BMCs participate in the muscle restoration of mdx mice. We analyzed both syngeneic and allogeneic BMC transplantation under different conditions. Our data indicated that 3 Gy X-ray irradiation with subsequent BMC transplantation improved dystrophin synthesis and the structure of striated muscle fibers (SMFs) in mdx mice as well as decreasing the death rate of SMFs. In addition, we observed the normalization of neuromuscular junctions (NMJs) in mdx mice after nonmyeloablative BMC transplantation. In conclusion, we demonstrated that nonmyeloablative BMC transplantation could be considered a method for DMD treatment.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Ratones , Animales , Distrofina/genética , Distrofina/metabolismo , Ratones Endogámicos mdx , Trasplante de Médula Ósea , Distrofia Muscular de Duchenne/genética , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad
10.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240370

RESUMEN

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Proteína FUS de Unión a ARN/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo
11.
J Cachexia Sarcopenia Muscle ; 14(3): 1533-1545, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060275

RESUMEN

BACKGROUND: There is increasing evidence of crosstalk between organs. The neuromuscular junction (NMJ) is a peripheral chemical synapse whose function and morphology are sensitive to acetylcholine (ACh) release and muscle depolarization. In an attempt to improve our understanding of NMJ plasticity and muscle crosstalk, the effects of unilateral direct electrical stimulation of a hindlimb muscle on the NMJ were investigated in rats exposed long-term post-synaptic neuromuscular blockade. METHODS: Sprague Dawley rats were subjected to post-synaptic blockade of neuromuscular transmission by systemic administration of α-cobrotoxin and mechanically ventilated for up to 8 days and compared with untreated sham operated controls and animals exposed to unilateral chronic electrical stimulation 12 h/day for 5 or 8 days. RESULTS: NMJs produced axonal and glial sprouts (growth of processes that extend beyond the confines of the synapse defined by high-density aggregates of acetylcholine receptors [AChRs]) in response to post-synaptic neuromuscular blockade, but less than reported after peripheral denervation or pre-synaptic blockade. Direct electrical soleus muscle stimulation reduced the terminal Schwann cell (tSC) and axonal sprouting in both stimulated and non-stimulated contralateral soleus. Eight days chronic stimulation reduced (P < 0.001) the number of tSC sprouts on stimulated and non-stimulated soleus from 6.7 ± 0.5 and 6.9 ± 0.5 sprouts per NMJ, respectively, compared with 10.3 ± 0.9 tSC per NMJ (P < 0.001) in non-stimulated soleus from rats immobilized for 8 days. A similar reduction of axonal sprouts (P < 0.001) was observed in stimulated and non-stimulated contralateral soleus in response to chronic electrical stimulation. RNAseq-based gene expression analyses confirmed a restoring effect on both stimulated and unstimulated contralateral muscle. The cross-over effect was paralleled by increased cytokine/chemokine levels in stimulated and contralateral unstimulated muscle as well as in plasma. CONCLUSIONS: Motor axon terminals and terminal Schwann cells at NMJs of rats subjected to post-synaptic neuromuscular blockade exhibited sprouting responses. These axonal and glial responses were likely dampened by a muscle-derived myokines released in an activity-dependent manner with both local and systemic effects.


Asunto(s)
Músculo Esquelético , Unión Neuromuscular , Ratas , Animales , Ratas Sprague-Dawley , Unión Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo , Estimulación Eléctrica
12.
Mol Neurobiol ; 60(7): 4084-4104, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37016047

RESUMEN

The vertebrate neuromuscular junction (NMJ) is a specialised chemical synapse involved in the transmission of bioelectric signals between a motor neuron and a skeletal muscle fiber, leading to muscle contraction. Typically, the NMJ is a tripartite synapse comprising (a) a presynaptic region represented by the motor nerve ending, (b) a postsynaptic skeletal motor endplate area, and (c) perisynaptic Schwann cells (PSCs) that shield the motor nerve terminal. Increasing evidence points towards the role of PSCs in the maintenance and control of neuromuscular integrity, transmission, and plasticity. Acetylcholine (ACh) is the main neurotransmitter at the vertebrate skeletal NMJ, and its role is fine-tuned by co-released purinergic neuromodulators, like adenosine 5'-triphosphate (ATP) and its metabolite adenosine (ADO). Adenine nucleotides modulate transmitter release and expression of postsynaptic ACh receptors at motor synapses via the activation of P2Y and P2X receptors. Endogenously generated ADO modulates ACh release by acting via co-localised inhibitory A1 and facilitatory A2A receptors on motor nerve terminals, whose tonic activation depends on the neuronal firing pattern and their interplay with cholinergic receptors and neuropeptides. Thus, the concerted action of adenine nucleotides, ADO, and ACh/neuropeptide co-transmitters is paramount to adapting the neuromuscular transmission to the working load under pathological conditions, like Myasthenia gravis. Unravelling these functional complexities prompted us to review our knowledge about the way purines orchestrate neuromuscular transmission and plasticity in light of the tripartite synapse concept, emphasising the often-forgotten role of PSCs in this context.


Asunto(s)
Unión Neuromuscular , Sinapsis , Sinapsis/metabolismo , Unión Neuromuscular/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Neuronas Motoras/metabolismo , Acetilcolina/metabolismo
13.
J Neurophysiol ; 129(5): 1259-1277, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073966

RESUMEN

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs.NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.


Asunto(s)
Síndrome Miasténico de Lambert-Eaton , Animales , Humanos , Síndrome Miasténico de Lambert-Eaton/patología , Canales de Calcio/metabolismo , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Canales de Calcio Tipo Q , Sinaptotagminas , Mamíferos/metabolismo
14.
Neuron ; 111(9): 1355-1380, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36963381

RESUMEN

Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Unión Neuromuscular/metabolismo , ARN Mensajero , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
15.
Mol Neurobiol ; 60(3): 1580-1593, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36526930

RESUMEN

In recent years, we have studied by immunohistochemistry, intracellular recording, and western blotting the role of the muscarinic acetylcholine receptors (mAChRs; M1, M2, and M4 subtypes) in the mammalian neuromuscular junction (NMJ) during development and in the adult. Here, we evaluate our published data to emphasize the mAChRs' relevance in developmental synaptic elimination and their crosstalk with other metabotropic receptors, downstream kinases, and voltage-gated calcium channels (VGCCs). The presence of mAChRs in the presynaptic membrane of motor nerve terminals allows an autocrine mechanism in which the secreted acetylcholine influences the cell itself in feedback. mAChR subtypes are coupled to different downstream pathways, so their feedback can move in a broad range between positive and negative. Moreover, mAChRs allow direct activity-dependent interaction through ACh release between the multiple competing axons during development. Additional regulation from pre- and postsynaptic sites (including neurotrophic retrograde control), the agonistic and antagonistic contributions of adenosine receptors (AR; A1 and A2A), and the tropomyosin-related kinase B receptor (TrkB) cooperate with mAChRs in the axonal competitive interactions which lead to supernumerary synapse elimination that achieves the optimized monoinnervation of musculoskeletal cells. The metabotropic receptor-driven balance between downstream PKA and PKC activities, coupled to developmentally regulated VGCC, explains much of how nerve terminals with different activities finally progress to their withdrawal or strengthening.


Asunto(s)
Axones , Unión Neuromuscular , Animales , Unión Neuromuscular/metabolismo , Axones/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Canales de Calcio/metabolismo , Mamíferos/metabolismo
16.
Injury ; 54(2): 345-361, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36446670

RESUMEN

Peripheral nerve injuries (PNI) lead to alterations in the Agrin-LRP4-MuSK pathway. This results in disaggregation of AChRs and change from epsilon (mature, innervated) to gamma (immature, denervated) subunit. Tubulization technique has been shown to be effective for PNI repair and it also allows the use of adjuvants, such as fibrin biopolymer (FB). This study evaluated the effect of the association of tubulization with FB after PNI on AChRs and associated proteins. Fifty-two adults male Wistar rats were used, distributed in 4 experimental groups: Sham Control (S), Denervated Control (D); Tubulization (TB) and Tubulization + Fibrin Biopolymer (TB+FB). Catwalk was performed every 15 days. Ninety days after surgery the right soleus muscles and ischiatic nerves were submitted to the following analyses: (a) morphological and morphometric analysis of AChRs by confocal microscopy; (b) morphological and morphometric analysis of the ischiatic nerve; (c) protein quantification of AChRs: alpha, gama, and epsilon, of Schwann cells, agrin, LRP4, MuSK, rapsyn, MMP3, MyoD, myogenin, MURF1 and atrogin-1. The main results were about the NMJs that in the TB+FB group presented morphological and morphometric approximation (compactness index; area of the AChRs and motor plate) to the S group. In addition, there were also an increase of S100 and AChRε protein expression and a decrease of MyoD. These positive association resulted in AChRs stabilization that potentiate the neuromuscular regeneration, which strengthens the use of TB for severe injuries repair and the beneficial effect of FB, along with tubulization technique.


Asunto(s)
Traumatismos de los Nervios Periféricos , Ratas , Animales , Masculino , Agrina/farmacología , Agrina/metabolismo , Fibrina/metabolismo , Distribución Normal , Ratas Wistar , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
17.
J Cachexia Sarcopenia Muscle ; 14(1): 226-242, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416282

RESUMEN

BACKGROUND: Sarcopenia is common in patients with Parkinson's disease (PD), showing mitochondrial oxidative stress in skeletal muscle. The aggregation of α-synuclein (α-Syn) to induce oxidative stress is a key pathogenic process of PD; nevertheless, we know little about its potential role in regulating peripheral nerves and the function of the muscles they innervate. METHODS: To investigate the role of α-Syn aggregation on neuromuscular system, we used the Thy1 promoter to overexpress human α-Syn transgenic mice (mThy1-hSNCA). hα-Syn expression was evaluated by western blot, and its localization was determined by confocal microscopy. The impact of α-Syn aggregation on the structure and function of skeletal muscle mitochondria and neuromuscular junctions (NMJs), as well as muscle mass and function were characterized by flow cytometry, transmission electron microscopy, Seahorse XF24 metabolic assay, and AAV9 in vivo injection. We assessed the regenerative effect of mitochondrial-targeted superoxide dismutase (Mito-TEMPO) after skeletal muscle injury in mThy1-hSNCA mice. RESULTS: Overexpressed hα-Syn protein localized in motor neuron axons and NMJs in muscle and formed aggregates. α-Syn aggregation increased the number of abnormal mitochondrial in the intramuscular axons and NMJs by over 60% (P < 0.01), which inhibited the release of acetylcholine (ACh) from presynaptic vesicles in NMJs (P < 0.05). The expression of genes associated with NMJ activity, neurotransmission and regulation of reactive oxygen species (ROS) metabolic process were significantly decreased in mThy1-hSNCA mice, resulting in ROS production elevated by ~220% (P < 0.05), thereby exacerbating oxidative stress. Such process altered mitochondrial spatial relationships to sarcomeric structures, decreased Z-line spacing by 36% (P < 0.05) and increased myofibre apoptosis by ~10% (P < 0.05). Overexpression of α-Syn altered the metabolic profile of muscle satellite cells (MuSCs), including basal respiratory capacity (~170% reduction) and glycolytic capacity (~150% reduction) (P < 0.05) and decreased cell migration and fusion during muscle regeneration (~60% and ~40%, respectively) (P < 0.05). We demonstrated that Mito-TEMPO treatment could restore the oxidative stress status (the complex I/V protein and enzyme activities increased ~200% and ~150%, respectively), which caused by α-Syn aggregation, and improve the ability of muscle regeneration after injury. In addition, the NMJ receptor fragmentation and ACh secretion were also improved. CONCLUSIONS: These results reveal that the α-synuclein aggregation plays an important role in regulating acetylcholine release from neuromuscular junctions and induces intramuscular mitochondrial oxidative stress, which can provide new insights into the aetiology of muscle atrophy in patients with Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Sarcopenia , alfa-Sinucleína , Animales , Humanos , Ratones , Acetilcolina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Ratones Transgénicos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo
18.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499379

RESUMEN

Accelerated postsynaptic remodelling and disturbance of neuromuscular transmission are common features of autoimmune neurodegenerative diseases. Homer protein isoform expression, crosslinking activity and neuromuscular subcellular localisation are studied in mouse hind limb muscles of an experimentally induced autoimmune model of Myasthenia Gravis (EAMG) and correlated to motor end plate integrity. Soleus (SOL), extensor digitorum longus (EDL) and gastrocnemius (GAS) skeletal muscles are investigated. nAChR membrane clusters were studied to monitor neuromuscular junction (NMJ) integrity. Fibre-type cross-sectional area (CSA) analysis is carried out in order to determine the extent of muscle atrophy. Our findings clearly showed that crosslinking activity of Homer long forms (Homer 1b/c and Homer2a/b) are decreased in slow-twitch and increased in fast-twitch muscle of EAMG whereas the short form of Homer that disrupts Homer crosslinking (Homer1a) is upregulated in slow-twitch muscle only. Densitometry analysis showed a 125% increase in Homer protein expression in EDL, and a 45% decrease in SOL of EAMG mice. In contrast, nAChR fluorescence pixel intensity decreased in endplates of EAMG mice, more distinct in type-I dominant SOL muscle. Morphometric CSA of EAMG vs. control (CTR) revealed a significant reduction in EDL but not in GAS and SOL. Taken together, these results indicate that postsynaptic Homer signalling is impaired in slow-twitch SOL muscle from EAMG mice and provide compelling evidence suggesting a functional coupling between Homer and nAChR, underscoring the key role of Homer in skeletal muscle neurophysiology.


Asunto(s)
Miastenia Gravis , Unión Neuromuscular , Ratones , Animales , Unión Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Placa Motora , Modelos Animales de Enfermedad , Proteínas de Andamiaje Homer/metabolismo
19.
Cells ; 11(24)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36552732

RESUMEN

Canonical Wnt signaling is involved in skeletal muscle cell biology. The exact way in which this pathway exerts its contribution to myogenesis or neuromuscular junctions (NMJ) is a matter of debate. Next to the common co-receptors of canonical Wnt signaling, Lrp5 and Lrp6, the receptor tyrosine kinase MuSK was reported to bind at NMJs WNT glycoproteins by its extracellular cysteine-rich domain. Previously, we reported canonical Wnt signaling being active in fast muscle fiber types. Here, we used conditional Lrp5 or Lrp6 knockout mice to investigate the role of these receptors in muscle cells. Conditional double knockout mice died around E13 likely due to ectopic expression of the Cre recombinase. Phenotypes of single conditional knockout mice point to a very divergent role for the two receptors. First, muscle fiber type distribution and size were changed. Second, canonical Wnt signaling reporter mice suggested less signaling activity in the absence of Lrps. Third, expression of several myogenic marker genes was changed. Fourth, NMJs were of fragmented phenotype. Fifth, recordings revealed impaired neuromuscular transmission. In sum, our data show fundamental differences in absence of each of the Lrp co-receptors and suggest a differentiated view of canonical Wnt signaling pathway involvement in adult skeletal muscle cells.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Unión Neuromuscular , Receptores Wnt , Animales , Ratones , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , Receptores Wnt/genética , Receptores Wnt/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo
20.
J Neurosci ; 42(50): 9450-9472, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36344265

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition in which the mechanisms underlying its core symptomatology are largely unknown. Studying animal models of monogenic syndromes associated with ASD, such as neurofibromatosis type 1 (NF1), can offer insights into its etiology. Here, we show that loss of function of the Drosophila NF1 ortholog results in tactile hypersensitivity following brief mechanical stimulation in the larva (mixed sexes), paralleling the sensory abnormalities observed in individuals with ASD. Mutant larvae also exhibit synaptic transmission deficits at the glutamatergic neuromuscular junction (NMJ), with increased spontaneous but reduced evoked release. While the latter is homeostatically compensated for by a postsynaptic increase in input resistance, the former is consistent with neuronal hyperexcitability. Indeed, diminished expression of NF1 specifically within central cholinergic neurons induces both excessive neuronal firing and tactile hypersensitivity, suggesting the two may be linked. Furthermore, both impaired synaptic transmission and behavioral deficits are fully rescued via knock-down of Ras proteins. These findings validate NF1 -/- Drosophila as a tractable model of ASD with the potential to elucidate important pathophysiological mechanisms.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) affects 1-2% of the overall population and can considerably impact an individual's quality of life. However, there are currently no treatments available for its core symptoms, largely because of a poor understanding of the underlying mechanisms involved. Examining how loss of function of the ASD-associated NF1 gene affects behavior and physiology in Drosophila may shed light on this. In this study, we identify a novel, ASD-relevant behavioral phenotype in NF1 -/- larvae, namely an enhanced response to mechanical stimulation, which is associated with Ras-dependent synaptic transmission deficits indicative of neuronal hyperexcitability. Such insights support the use of Drosophila neurofibromatosis type 1 (NF1) models in ASD research and may provide outputs for genetic or pharmacological screens in future studies.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de Drosophila , Neurofibromatosis 1 , Animales , Drosophila/metabolismo , Larva/metabolismo , Calidad de Vida , Unión Neuromuscular/metabolismo , Transmisión Sináptica/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA