Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.421
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927995

RESUMEN

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Uniones Comunicantes , Células-Madre Neurales , Neuroglía , Octanoles , Animales , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratas , Octanoles/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/citología , Células Cultivadas , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/efectos de los fármacos , Conexina 43/metabolismo , Ratas Wistar , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/citología , Animales Recién Nacidos , Humanos
2.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38849015

RESUMEN

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Asunto(s)
Apoptosis , Neoplasias Óseas , Carcinoma de Células Renales , Proteínas de la Matriz Extracelular , Uniones Comunicantes , Neoplasias Renales , Osteocitos , Osteocitos/metabolismo , Osteocitos/patología , Humanos , Animales , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/secundario , Apoptosis/efectos de los fármacos , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Progresión de la Enfermedad , Conexina 43/metabolismo , Línea Celular Tumoral , Factor de Crecimiento Transformador beta/metabolismo , Osteólisis/patología , Osteólisis/metabolismo , Femenino
3.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849852

RESUMEN

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Asunto(s)
Fibroblastos Asociados al Cáncer , Comunicación Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Animales , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Uniones Comunicantes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Análisis Espacio-Temporal , Uniones Estrechas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo
4.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928300

RESUMEN

Connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells are of paramount importance for intercellular communication. In physiological conditions, HCs can form gap junction (GJ) channels, providing a direct diffusive path between neighbouring cells. In addition, unpaired HCs provide conduits for the exchange of solutes between the cytoplasm and the extracellular milieu, including messenger molecules involved in paracrine signalling. The synergistic action of membrane potential and Ca2+ ions controls the gating of the large and relatively unselective pore of connexin HCs. The four orders of magnitude difference in gating sensitivity to the extracellular ([Ca2+]e) and the cytosolic ([Ca2+]c) Ca2+ concentrations suggests that at least two different Ca2+ sensors may exist. While [Ca2+]e acts as a spatial modulator of the HC opening, which is most likely dependent on the cell layer, compartment, and organ, [Ca2+]c triggers HC opening and the release of extracellular bursts of messenger molecules. Such molecules include ATP, cAMP, glutamate, NAD+, glutathione, D-serine, and prostaglandins. Lost or abnormal HC regulation by Ca2+ has been associated with several diseases, including deafness, keratitis ichthyosis, palmoplantar keratoderma, Charcot-Marie-Tooth neuropathy, oculodentodigital dysplasia, and congenital cataracts. The fact that both an increased and a decreased Ca2+ sensitivity has been linked to pathological conditions suggests that Ca2+ in healthy cells finely tunes the normal HC function. Overall, further investigation is needed to clarify the structural and chemical modifications of connexin HCs during [Ca2+]e and [Ca2+]c variations. A molecular model that accounts for changes in both Ca2+ and the transmembrane voltage will undoubtedly enhance our interpretation of the experimental results and pave the way for developing therapeutic compounds targeting specific HC dysfunctions.


Asunto(s)
Calcio , Conexinas , Uniones Comunicantes , Conexinas/metabolismo , Conexinas/genética , Humanos , Calcio/metabolismo , Animales , Uniones Comunicantes/metabolismo , Señalización del Calcio
5.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892334

RESUMEN

Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.


Asunto(s)
Conexinas , ARN no Traducido , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , Conexinas/metabolismo , Conexinas/genética , MicroARNs/genética , MicroARNs/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Regulación de la Expresión Génica , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Uniones Comunicantes/metabolismo , Uniones Comunicantes/genética , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/terapia
7.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791387

RESUMEN

Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.


Asunto(s)
Células del Cúmulo , Oocitos , Oocitos/metabolismo , Células del Cúmulo/metabolismo , Células del Cúmulo/citología , Humanos , Animales , Femenino , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Uniones Comunicantes/metabolismo , Fosforilación Oxidativa , Calcio/metabolismo , Canales de Potasio/metabolismo , Comunicación Celular
8.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791437

RESUMEN

Gap junctions (GJs) are important in the regulation of cell growth, morphology, differentiation and migration. However, recently, more attention has been paid to their role in the pathogenesis of different diseases as well as tumorigenesis, invasion and metastases. The expression pattern and possible role of connexins (Cxs), as major GJ proteins, under both physiological and pathological conditions in the adrenal gland, were evaluated in this review. The databases Web of Science, PubMed and Scopus were searched. Studies were evaluated if they provided data regarding the connexin expression pattern in the adrenal gland, despite current knowledge of this topic not being widely investigated. Connexin expression in the adrenal gland differs according to different parts of the gland and depends on ACTH release. Cx43 is the most studied connexin expressed in the adrenal gland cortex. In addition, Cx26, Cx32 and Cx50 were also investigated in the human adrenal gland. Cx50 as the most widespread connexin, along with Cx26, Cx29, Cx32, Cx36 and Cx43, has been expressed in the adrenal medulla with distinct cellular distribution. Considerable effort has recently been directed toward connexins as therapeutically targeted molecules. At present, there exist several viable strategies in the development of potential connexin-based therapeutics. The differential and hormone-dependent distribution of gap junctions within adrenal glands, the relatively large gap junction within this gland and the increase in the gap junction size and number following hormonal treatment would indicate that gap junctions play a pivotal role in cell functioning in the adrenal gland.


Asunto(s)
Conexinas , Uniones Comunicantes , Humanos , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Animales , Regulación Neoplásica de la Expresión Génica
9.
Cancer Med ; 13(7): e7021, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562019

RESUMEN

OBJECTIVE: Non-small-cell lung cancer (NSCLC) is a deadly form of cancer that exhibits extensive intercellular communication which contributed to chemoradiotherapy resistance. Recent evidence suggests that arrange of key proteins are involved in lung cancer progression, including gap junction proteins (GJPs). METHODS AND RESULTS: In this study, we examined the expression patterns of GJPs in NSCLC, uncovering that both gap junction protein, beta 2 (GJB2) and gap junction protein, beta 2 (GJB3) are increased in LUAD and LUSC. We observed a correlation between the upregulation of GJB2, GJB3 in clinical samples and a worse prognosis in patients with NSCLC. By examining the mechanics, we additionally discovered that nuclear factor erythroid-2-related factor 1 (NFE2L1) had the capability to enhance the expression of connexin26 and connexin 31 in the NSCLC cell line A549. In addition, the use of metformin was discovered to cause significant downregulation of gap junction protein, betas (GJBs) by limiting the presence of NFE2L1 in the cytoplasm. CONCLUSION: This emphasizes the potential of targeting GJBs as a viable treatment approach for NSCLC patients receiving metformin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metformina , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Conexinas/genética , Conexinas/metabolismo , Conexinas/uso terapéutico , Uniones Comunicantes/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo
10.
Methods Mol Biol ; 2801: 125-134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578418

RESUMEN

Connexins (Cxs) are transmembrane proteins which form hemichannels and gap junction channels at the plasma membrane. These channels allow the exchange of ions and molecules between the intra- and extracellular space and between cytoplasm of adjacent cells, respectively. The channel function of Cx assemblies has been extensively studied; however, "noncanonical" functions have emerged in the last few decades and have capture the attentions of many researchers, including the role of some Cxs as gene modulators or transcription factors. In this chapter, we describe a protocol to study the interaction of Cx46 with DNA in HeLa cells. These methods can facilitate understanding the role of Cxs in physiological processes and pathological mechanisms, including, for example, the contribution of Cx46 in maintaining stemness of glioma cancer stem cells.


Asunto(s)
Conexinas , Canales Iónicos , Humanos , Conexinas/genética , Conexinas/metabolismo , Células HeLa , Uniones Comunicantes/metabolismo , ADN/genética
11.
Methods Mol Biol ; 2801: 135-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578419

RESUMEN

Gap junctions, pivotal intercellular conduits, serve as communication channels between adjacent cells, playing a critical role in modulating membrane potential distribution across cellular networks. The family of Pannexin (Panx) proteins, in particular Pannexin1 (Panx1), are widely expressed in vertebrate cells and exhibit sequence homology with innexins, the invertebrate gap junction channel constituents. Despite being ubiquitously expressed, detailed functional and pharmacological properties of Panx1 intercellular cell-cell channels require further investigation. In this chapter, we introduce optimized cell culture methodologies and electrophysiology protocols to expedite the exploration of endogenous Panx1 cell-cell channels in TC620 cells, a human oligodendroglioma cell line that naturally expresses Panx1. We anticipate these refined protocols will significantly contribute to future characterizations of Panx1-based intercellular cell-cell channels across diverse cell types and offer valuable insights into both normal cellular physiology and pathophysiology.


Asunto(s)
Conexinas , Uniones Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Línea Celular , Canales Iónicos/metabolismo , Potenciales de la Membrana
12.
Biomed Pharmacother ; 174: 116550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593702

RESUMEN

Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca2+, Mg2+, and phosphorylation. Chemical modulators of GJIC are being used in cases of various intercellular communication-dependent diseases. In this study, we used molecular docking, dual whole-cell patch-clamp, and Western blotting to investigate the impact of connexin phosphorylation on GJ chemical gating by α-pinene and other GJ inhibitors (octanol, carbenoxolone, mefloquine, intracellular pH, glycyrrhetinic acid, and sevoflurane) in HeLa cells expressing exogenous Cx43 (full length and truncated at amino acid 258) and other connexins typical of heart and/or nervous system (Cx36, Cx40, Cx45, and Cx47), and in cells expressing endogenous Cx43 (Novikoff and U-87). We found that Ca2+-regulated kinases, such as Ca2+/calmodulin-dependent kinase II, atypical protein kinase C, cyclin-dependent kinase, and Pyk2 kinase may allosterically modulate the potency of α-pinene through phosphorylation of Cx43 C-terminus. The identified new phenomenon was Cx isoform-, inhibitor-, and cell type-dependent. Overall, these results suggest that compounds, the potency of which depends on receptor phosphorylation, might be of particular interest in developing targeted therapies for diseases accompanied by high kinase activity, such as cardiac arrhythmias, epilepsy, stroke, essential tremor, inflammation, and cancer.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Simulación del Acoplamiento Molecular , Humanos , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Fosforilación/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Células HeLa
13.
Adv Mater ; 36(25): e2402532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563503

RESUMEN

Due to inherent differences in cellular composition and metabolic behavior with host cells, tumor-harbored bacteria can discriminatorily affect tumor immune landscape. However, the mechanisms by which intracellular bacteria affect antigen presentation process between tumor cells and antigen-presenting cells (APCs) are largely unknown. The invasion behavior of attenuated Salmonella VNP20009 (VNP) into tumor cells is investigated and an attempt is made to modulate this behavior by modifying positively charged polymers on the surface of VNP. It is found that non-toxic chitosan oligosaccharide (COS) modified VNP (VNP@COS) bolsters the formation of gap junction between tumor cells and APCs by enhancing the ability of VNP to infect tumor cells. On this basis, a bacterial biohybrid is designed to promote in situ antigen cross-presentation through intracellular bacteria induced gap junction. This bacterial biohybrid also enhances the expression of major histocompatibility complex class I molecules on the surface of tumor cells through the incorporation of Mdivi-1 coupled with VNP@COS. This strategic integration serves to heighten the immunogenic exposure of tumor antigens; while, preserving the cytotoxic potency of T cells. A strategy is proposed to precisely controlling the function and local effects of microorganisms within tumors.


Asunto(s)
Presentación de Antígeno , Quitosano , Uniones Comunicantes , Salmonella , Humanos , Quitosano/química , Línea Celular Tumoral , Uniones Comunicantes/metabolismo , Salmonella/inmunología , Animales , Reactividad Cruzada , Ratones , Oligosacáridos/química , Neoplasias/inmunología , Neoplasias/patología , Células Presentadoras de Antígenos/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología
14.
Biomed Pharmacother ; 174: 116552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599061

RESUMEN

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Asunto(s)
Conexina 43 , Miocitos del Músculo Liso , Factor de Crecimiento Nervioso , Arteria Pulmonar , Animales , Humanos , Masculino , Ratas , Células Cultivadas , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/efectos de los fármacos , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Ratas Wistar , Receptor trkA/metabolismo
15.
Cells ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38534339

RESUMEN

From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Comunicación Celular , Neoplasias/metabolismo , Uniones Comunicantes/metabolismo , Microambiente Tumoral
16.
Molecules ; 29(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474514

RESUMEN

Cell junctions, which are typically associated with dynamic cytoskeletons, are essential for a wide range of cellular activities, including cell migration, cell communication, barrier function and signal transduction. Observing cell junctions in real-time can help us understand the mechanisms by which they regulate these cellular activities. This study examined the binding capacity of a modified tridecapeptide from Connexin 43 (Cx43) to the cell junction protein zonula occludens-1 (ZO-1). The goal was to create a fluorescent peptide that can label cell junctions. A cell-penetrating peptide was linked to the modified tridecapeptide. The heterotrimeric peptide molecule was then synthesized. The binding of the modified tridecapeptide was tested using pulldown and immunoprecipitation assays. The ability of the peptide to label cell junctions was assessed by adding it to fixed or live Caco-2 cells. The testing assays revealed that the Cx43-derived peptide can bind to ZO-1. Additionally, the peptide was able to label cell junctions of fixed cells, although no obvious cell junction labeling was observed clearly in live cells, probably due to the inadequate affinity. These findings suggest that labeling cell junctions using a peptide-based strategy is feasible. Further efforts to improve its affinity are warranted in the future.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Humanos , Conexina 43/química , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Proteínas de la Membrana/metabolismo , Células CACO-2 , Péptidos/metabolismo , Fosfoproteínas/metabolismo
17.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326974

RESUMEN

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Asunto(s)
Conexina 43 , Receptor beta de Estrógeno , Animales , Femenino , Conexina 43/metabolismo , Receptor beta de Estrógeno/metabolismo , Núcleo Supraquiasmático/fisiología , Ritmo Circadiano/fisiología , Uniones Comunicantes/metabolismo , Conexinas/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Estrógenos/farmacología , Mamíferos/metabolismo
18.
J Nanobiotechnology ; 21(1): 473, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066528

RESUMEN

BACKGROUND: Gene therapy for lung cancer has emerged as a novel tumor-combating strategy for its superior tumor specificity, low systematical toxicity and huge clinical translation potential. Especially, the applications of microRNA shed led on effective tumor ablation by directly interfering with the crucial gene expression, making it one of the most promising gene therapy agents. However, for lung cancer therapy, the microRNA treatment confronted three bottlenecks, the poor tumor tissue penetration effect, the insufficient lung drug accumulation and unsatisfied gene transfection efficiency. To address these issues, an inhalable RGD-TAT dual peptides-modified cationic liposomes loaded with microRNA miR-34a and gap junction (GJ) regulation agent all-trans retinoic acid (ATRA) was proposed, which was further engineered into dry powder inhalers (DPIs). RESULTS: Equipped with a rough particle surface and appropriate aerodynamic size, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs were expected to deposit into the deep lung and reach lung tumor lesions guided by targeting peptide RGD. Assisted by cellular transmembrane peptides TAT, the RGD-TAT-CLPs/ARTA@miR-34a was proven to be effectively internalized by cancer cells, enhancing gene transfection efficiency. Then, the GJ between tumor cells was upregulated by ARTA, facilitating the intercellular transport of miR-34a and boosting the gene expression in the deep tumor. CONCLUSION: Overall, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could enhance tumor tissue penetration, elevate lung drug accumulation and boost gene transfection efficiency, breaking the three bottlenecks to enhancing tumor elimination in vitro and in vivo. We believe that the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could serve as a promising pulmonary gene delivery platform for multiple lung local disease treatments.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Liposomas , Neoplasias Pulmonares/terapia , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/metabolismo , Oligopéptidos , Uniones Comunicantes/metabolismo , Genes Relacionados con las Neoplasias , Línea Celular Tumoral
19.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069203

RESUMEN

Connexins (Cxs) form gap junctions through homotypic/heterotypic oligomerization. Cxs are initially synthesized in the endoplasmic reticulum, then assembled as hexamers in the Golgi apparatus before being integrated into the cell membrane as hemichannels. These hemichannels remain closed until they combine to create gap junctions, directly connecting neighboring cells. Changes in the intracellular or extracellular environment are believed to trigger the opening of hemichannels, creating a passage between the inside and outside of the cell. The size of the channel pore depends on the Cx isoform and cellular context-specific effects such as posttranslational modifications. Hemichannels allow various bioactive molecules, under ~1 kDa, to move in and out of the host cell in the direction of the electrochemical gradient. In this review, we explore the fundamental roles of Cxs and their clinical implications in various neurological dysfunctions, including hereditary diseases, ischemic brain disorders, degenerative conditions, demyelinating disorders, and psychiatric illnesses. The influence of Cxs on the pathomechanisms of different neurological disorders varies depending on the circumstances. Hemichannels are hypothesized to contribute to proinflammatory effects by releasing ATP, adenosine, glutamate, and other bioactive molecules, leading to neuroglial inflammation. Modulating Cxs' hemichannels has emerged as a promising therapeutic approach.


Asunto(s)
Conexinas , Enfermedades del Sistema Nervioso , Humanos , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Neuroglía/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Inflamación/metabolismo
20.
Protein Pept Lett ; 30(11): 891-899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37974440

RESUMEN

Gap junction (GJ) is a special cell membrane structure composed of connexin. Connexin is widely distributed and expressed in all tissues except differentiated skeletal muscle, red blood cells, and mature sperm cells, which is related to the occurrence of many genetic diseases due to its mutation. Its function of regulating immune response, cell proliferation, migration, apoptosis, and carcinogenesis makes it a therapeutic target for a variety of diseases. In this paper, the possible mechanism of its action in nervous system-related diseases and treatment are reviewed.


Asunto(s)
Conexina 43 , Conexinas , Masculino , Humanos , Conexinas/genética , Conexinas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Semen/metabolismo , Uniones Comunicantes/metabolismo , Sistema Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA