Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Pathog Dis ; 822024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794885

RESUMEN

Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.


Asunto(s)
Enterococcus faecalis , Células Epiteliales , Klebsiella pneumoniae , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Infecciones Urinarias/microbiología , Enterococcus faecalis/fisiología , Células Epiteliales/microbiología , Escherichia coli Uropatógena/fisiología , Klebsiella pneumoniae/fisiología , Vejiga Urinaria/microbiología , Vejiga Urinaria/citología , Coinfección/microbiología , Línea Celular , Interacciones Huésped-Patógeno
2.
Urol J ; 21(4): 208-220, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38716613

RESUMEN

PURPOSE: The quantitative objective of the current systematic review was to identify the potential role of urinary microbiota in bladder cancer (BC) carcinogenesis, invasiveness, progression, and metastasis. MATERIALS AND METHODS: The proposed systematic review was conducted in accordance with critical review according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, and the Joanna Briggs Institute (JBI) methodology for systematic reviews. The search strategy aimed to find both published and unpublished studies up to the January 2024. A JBI appraisal checklist was used to assess possible biases. RESULTS: This systematic review was centered on 27 studies comprising 926 BC patients. Overall, 412 control individuals were compared with BC patients. The most common sampling method was midstream urine collection. Regarding microbial alpha diversity, there was no statistically significant difference between cancerous and healthy samples (n = 8), recurrent and not recurrent (n = 1), responders versus non-responders(n = 1), tumor grades (n = 1), and collection methods (n = 1). However, five studies reported higher diversity in controls, and five other studies reported, conversely, high levels of alpha diversity in BC patients or recurrent cases. Furthermore, a responder (RE) to treatment and a non-muscle invasive bladder cancer (NMIBC) groups demonstrated significant difference with non-responder (NR) and muscle invasive bladder cancer (MIBC), respectively. In terms of beta-diversity, nine studies reported significant diversity between BC patients and controls, one article demonstrated difference between recurrent and not recurrent patients, a study reported significant difference in RE and NR groups whereas another showed opposite, and others (n = 4) did not find any difference between BC, controls, MIBC and NMIBC patients, or between tumor grades. One study reported a difference between the collection method and beta-diversity in males and another reported the difference in females. CONCLUSION: The included studies demonstrate that the composition of urinary microbiota is altered in patients with BC. However, the differentially enriched genera in the urine of these patients vary between studies, and there is too much heterogeneity across studies to make any reliable and valid conclusions. Furthermore, well-designed research is necessary to assess the role of microbiota in the carcinogenesis and progression of BC.


Asunto(s)
Carcinogénesis , Microbiota , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/microbiología , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/orina , Humanos , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Invasividad Neoplásica
3.
Microb Pathog ; 190: 106642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599551

RESUMEN

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales , Infecciones por Klebsiella , Klebsiella oxytoca , Pulmón , Vejiga Urinaria , Klebsiella oxytoca/fisiología , Humanos , Células Epiteliales/microbiología , Pulmón/microbiología , Infecciones por Klebsiella/microbiología , Vejiga Urinaria/microbiología , Staphylococcus aureus/fisiología , Staphylococcus aureus/patogenicidad , Técnicas de Cocultivo , Coinfección/microbiología , Línea Celular , Interacciones Microbianas , Infecciones Oportunistas/microbiología , Infecciones del Sistema Respiratorio/microbiología , Virulencia
4.
Cell Rep ; 43(4): 114051, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564334

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection (UTI). UPEC invades bladder epithelial cells (BECs) via fusiform vesicles, escapes into the cytosol, and establishes biofilm-like intracellular bacterial communities (IBCs). Nucleoside-diphosphate kinase (NDK) is secreted by pathogenic bacteria to enhance virulence. However, whether NDK is involved in UPEC pathogenesis remains unclear. Here, we find that the lack of ndk impairs the colonization of UPEC CFT073 in mouse bladders and kidneys owing to the impaired ability of UPEC to form IBCs. Furthermore, we demonstrate that NDK inhibits caspase-1-dependent pyroptosis by consuming extracellular ATP, preventing superficial BEC exfoliation, and promoting IBC formation. UPEC utilizes the reactive oxygen species (ROS) sensor OxyR to indirectly activate the regulator integration host factor, which then directly activates ndk expression in response to intracellular ROS. Here, we reveal a signaling transduction pathway that UPEC employs to inhibit superficial BEC exfoliation, thus facilitating acute UTI.


Asunto(s)
Caspasa 1 , Infecciones por Escherichia coli , Nucleósido-Difosfato Quinasa , Piroptosis , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/patogenicidad , Animales , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Ratones , Caspasa 1/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Nucleósido-Difosfato Quinasa/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Humanos , Femenino , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transducción de Señal
5.
Front Cell Infect Microbiol ; 14: 1322119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638825

RESUMEN

Background: Uropathogenic Escherichia coli (UPEC) activates innate immune response upon invading the urinary tract, whereas UPEC can also enter bladder epithelial cells (BECs) through interactions with fusiform vesicles on cell surfaces and subsequently escape from the vesicles into the cytoplasm to establish intracellular bacterial communities, finally evading the host immune system and leading to recurrent urinary tract infection (RUTI). Tailin Fang II (TLF-II) is a Chinese herbal formulation composed of botanicals that has been clinically proven to be effective in treating urinary tract infection (UTI). However, the underlying therapeutic mechanisms remain poorly understood. Methods: Network pharmacology analysis of TLF-II was conducted. Female Balb/C mice were transurethrally inoculated with UPEC CFT073 strain to establish the UTI mouse model. Levofloxacin was used as a positive control. Mice were randomly divided into four groups: negative control, UTI, TLF-II, and levofloxacin. Histopathological changes in bladder tissues were assessed by evaluating the bladder organ index and performing hematoxylin-eosin staining. The bacterial load in the bladder tissue and urine sample of mice was quantified. Activation of the TLR4-NF-κB pathway was investigated through immunohistochemistry and western blotting. The urinary levels of interleukin (IL)-1ß and IL-6 and urine leukocyte counts were monitored. We also determined the protein expressions of markers associated with fusiform vesicles, Rab27b and Galectin-3, and levels of the phosphate transporter protein SLC20A1. Subsequently, the co-localization of Rab27b and SLC20A1 with CFT073 was examined using confocal fluorescence microscopy. Results: Data of network pharmacology analysis suggested that TLF-II could against UTI through multiple targets and pathways associated with innate immunity and inflammation. Additionally, TLF-II significantly attenuated UPEC-induced bladder injury and reduced the bladder bacterial load. Meanwhile, TLF-II inhibited the expression of TLR4 and NF-κB on BECs and decreased the urine levels of IL-1ß and IL-6 and urine leukocyte counts. TLF-II reduced SLC20A1 and Galectin-3 expressions and increased Rab27b expression. The co-localization of SLC20A1 and Rab27b with CFT073 was significantly reduced in the TLF-II group. Conclusion: Collectively, innate immunity and bacterial escape from fusiform vesicles play important roles in UPEC-induced bladder infections. Our findings suggest that TLF-II combats UPEC-induced bladder infections by effectively mitigating bladder inflammation and preventing bacterial escape from fusiform vesicles into the cytoplasm. The findings suggest that TLF-II is a promising option for treating UTI and reducing its recurrence.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Enfermedades del Sistema Inmune , Infecciones Urinarias , Escherichia coli Uropatógena , Femenino , Ratones , Animales , Vejiga Urinaria/microbiología , FN-kappa B , Levofloxacino/farmacología , Galectina 3 , Interleucina-6 , Receptor Toll-Like 4 , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología
6.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534100

RESUMEN

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Asunto(s)
Infecciones por Escherichia coli , Quinasa 1 de Adhesión Focal , Fenoles , Extractos Vegetales , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Humanos , Ratones , Adhesión Bacteriana/efectos de los fármacos , Ácidos Cafeicos/farmacología , Catequina/farmacología , Catequina/análogos & derivados , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Fenoles/farmacología , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/farmacología , Resveratrol/farmacología , Vejiga Urinaria/microbiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos
7.
Lab Anim ; 58(3): 252-260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38334709

RESUMEN

Catheterisation of the urinary bladder is needed in many types of human disease models in pigs. Based on our extensive experience with the pig as an infection model, we here demonstrate an approach of catheterising domestic pigs (40 attempts) and Göttingen minipigs (10 attempts) using a blinded method, that is, without speculums or videoscopes to visualise the urethral opening. The procedure was tested on control animals and pigs with experimental Escherichia coli urinary tract infection (UTI) to assess the potential influence of this condition on procedural outcome. Lastly, we performed cystoscopy in three animals to visualise the route to the urethra and to localise potential anatomical obstacles. All domestic pigs were catheterised successfully in an average of 2 minutes and 23 seconds, and this was not influenced by UTI (p = 0.06) or bladder urine content at the time of catheterisation (p = 0.32). All Göttingen minipigs were successfully catheterised in an average of 4 minutes and 27 seconds. We conclude that blinded catheterisation is a fast and reliable approach that can be performed in pigs with or without UTI with minimal risk of trauma or contamination.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades de los Porcinos , Porcinos Enanos , Vejiga Urinaria , Cateterismo Urinario , Infecciones Urinarias , Animales , Femenino , Infecciones Urinarias/veterinaria , Infecciones Urinarias/microbiología , Cateterismo Urinario/efectos adversos , Cateterismo Urinario/veterinaria , Cateterismo Urinario/métodos , Porcinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Vejiga Urinaria/microbiología , Enfermedades de los Porcinos/microbiología , Escherichia coli , Sus scrofa
8.
Microbiol Spectr ; 12(3): e0271223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38240572

RESUMEN

Management of urinary tract infection (UTI) in postmenopausal women can be challenging. The recent rise in resistance to most of the available oral antibiotic options together with high recurrence rate in postmenopausal women has further complicated treatment of UTI. As such, intravesical instillations of antibiotics like gentamicin are being investigated as an alternative to oral antibiotic therapies. This study evaluates the efficacy of the candidate intravesical therapeutic VesiX, a solution containing the cationic detergent Cetylpyridinium chloride, against a broad range of uropathogenic bacterial species clinically isolated from postmenopausal women with recurrent UTI (rUTI). We also evaluate the cytotoxicity of VesiX against cultured bladder epithelial cells and find that low concentrations of 0.0063% and 0.0125% provide significant bactericidal effect toward diverse bacterial species including uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, and Proteus mirabilis while minimizing cytotoxic effects against cultured 5637 bladder epithelial cells. Lastly, to begin to evaluate the potential utility of using VesiX in combination therapy with existing intravesical therapies for rUTI, we investigate the combined effects of VesiX and the intravesical antibiotic gentamicin. We find that VesiX and gentamicin are not antagonistic and are able to reduce levels of intracellular UPEC in cultured bladder epithelial cells. IMPORTANCE: When urinary tract infections (UTIs), which affect over 50% of women, become resistant to available antibiotic therapies dangerous complications like kidney infection and lethal sepsis can occur. New therapeutic paradigms are needed to expand our arsenal against these difficult to manage infections. Our study investigates VesiX, a Cetylpyridinium chloride (CPC)-based therapeutic, as a candidate broad-spectrum antimicrobial agent for use in bladder instillation therapy for antibiotic-resistant UTI. CPC is a cationic surfactant that is FDA-approved for use in mouthwashes and is used as a food additive but has not been extensively evaluated as a UTI therapeutic. Our study is the first to investigate its rapid bactericidal kinetics against diverse uropathogenic bacterial species isolated from postmenopausal women with recurrent UTI and host cytotoxicity. We also report that together with the FDA-approved bladder-instillation agent gentamicin, VesiX was able to significantly reduce intracellular populations of uropathogenic bacteria in cultured bladder epithelial cells.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Femenino , Vejiga Urinaria/microbiología , Cetilpiridinio/farmacología , Cetilpiridinio/uso terapéutico , Antibacterianos/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Células Epiteliales , Infecciones por Escherichia coli/microbiología
9.
PLoS Pathog ; 20(1): e1011926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190378

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs) in humans. Moreover, as one of the most common bacterial pathogens, UPEC imposes a substantial burden on healthcare systems worldwide. Epithelial cells and macrophages are two major components of the innate immune system, which play critical roles in defending the bladder against UPEC invasion. Yet, the routes of communication between these cells during UTI pathogenesis are still not fully understood. In the present study, we investigated the role of membrane-bound nanovesicles (exosomes) in the communication between bladder epithelial cells and macrophages during UPEC infection, using an array of techniques such as flow cytometry, miRNA profiling, RNA sequencing, and western blotting. Moreover, our in vitro findings were validated in a mouse model of UPEC-induced cystitis. We found that UPEC infection induced the bladder epithelial MB49 cell line to secrete large numbers of exosomes (MB49-U-Exo), which were efficiently absorbed by macrophages both in vivo and in vitro. Assimilation of MB49-U-Exo induced macrophages to produce proinflammatory cytokines, including tumor necrosis factor (TNF)α. Exposure of macrophages to MB49-U-Exo reduced their phagocytic activity (by downregulating the expression of phagocytosis-related genes) and increased their rate of apoptosis. Mechanistically, we showed that MB49-U-Exo were enriched in miR-18a-5p, which induced TNFα expression in macrophages by targeting PTEN and activating the MAPK/JNK signaling pathway. Moreover, administration of the exosome secretion inhibitor GW4869 or a TNFα-neutralizing antibody alleviated UPEC-mediated tissue damage in mice with UPEC-induced cystitis by reducing the bacterial burden of the bladder and dampening the associated inflammatory response. Collectively, these findings suggest that MB49-U-Exo regulate macrophage function in a way that exacerbates UPEC-mediated tissue impairment. Thus, targeting exosomal -release or TNFα signaling during UPEC infection may represent promising non-antibiotic strategies for treating UTIs.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Exosomas , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Animales , Ratones , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/metabolismo , Exosomas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Urinarias/microbiología , Macrófagos/metabolismo , Infecciones por Escherichia coli/microbiología , Células Epiteliales/metabolismo
10.
Dev Cell ; 59(1): 33-47.e5, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38101412

RESUMEN

Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1ß-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Infecciones Urinarias , Ratones , Femenino , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Manosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/metabolismo , Urotelio/metabolismo , Urotelio/microbiología , Interleucina-1beta , Gasderminas , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Senescencia Celular
11.
J Innate Immun ; 15(1): 865-875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980892

RESUMEN

Mounting evidence suggests that antimicrobial peptides and proteins (AMPs) belonging to the RNase A superfamily have a critical role in defending the bladder and kidney from bacterial infection. RNase 6 has been identified as a potent, leukocyte-derived AMP, but its impact on urinary tract infection (UTI) in vivo has not been demonstrated. To test the functional role of human RNase 6, we generated RNASE6 transgenic mice and studied their susceptibility to experimental UTI. In addition, we generated bone marrow-derived macrophages to study the impact of RNase 6 on antimicrobial activity within a cellular context. When subjected to experimental UTI, RNASE6 transgenic mice developed reduced uropathogenic Escherichia coli (UPEC) burden, mucosal injury, and inflammation compared to non-transgenic controls. Monocytes and macrophages were the predominant cellular sources of RNase 6 during UTI, and RNASE6 transgenic macrophages were more proficient at intracellular UPEC killing than non-transgenic controls. Altogether, our findings indicate a protective role for human RNase 6 during experimental UTI.


Asunto(s)
Ribonucleasas , Infecciones Urinarias , Animales , Humanos , Ratones , Endorribonucleasas/genética , Riñón , Ratones Transgénicos , Ribonucleasas/genética , Vejiga Urinaria/microbiología
12.
Microb Pathog ; 183: 106295, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562493

RESUMEN

The present study evaluated renal infection resulting from the implantation of C. tropicalis in the bladder of immunosuppressed mice. Yeasts were implanted in two manners: planktonic and via preformed biofilm on a small catheter fragment (SCF). Renal histopathology and cultures was performed 72 and 144 h after cystotomy was carried out in mice from three groups: group I contained non-contaminated mice implanted with a sterile SCF; group II mice received a sterile SCF plus a yeast suspension containing 1 × 107 yeasts/mL in a planktonic form; group III mice were implanted with a SCF containing preformed C. tropicalis biofilm. Viable yeasts were found in the kidneys of mice from both groups II and III. However, after 72 h the planktonic cells (group II) invaded more quickly than the sessile cells (group III). Over a longer period (144 h), group III exhibited a more invasive infection (50% of the animals presented renal infection and the renal fungal load was 3.2 log10 CFU/g tissue) than in group II, where yeasts were not found. C. tropicalis introduced into the bladder in two ways (in planktonic or biofilm form) were able to reach the kidney and establish a renal fungal infection, causing interstitial disorders. The data of the present study therefore support the hypothesis of an ascending pathway for renal infections by C. tropicalis. Furthermore, the biofilm resulted in a greater and progressive risk of renal infection, attributed to the slow detachment of the yeasts.


Asunto(s)
Candidiasis , Infecciones Urinarias , Ratones , Animales , Candida tropicalis , Candidiasis/microbiología , Infecciones Urinarias/microbiología , Vejiga Urinaria/microbiología , Catéteres , Biopelículas , Antifúngicos/uso terapéutico
13.
PLoS Pathog ; 19(5): e1011388, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167325

RESUMEN

There is a growing consensus that a significant proportion of recurrent urinary tract infections are linked to the persistence of uropathogens within the urinary tract and their re-emergence upon the conclusion of antibiotic treatment. Studies in mice and human have revealed that uropathogenic Escherichia coli (UPEC) can persist in bladder epithelial cells (BECs) even after the apparent resolution of the infection. Here, we found that, following the entry of UPEC into RAB27b+ fusiform vesicles in BECs, some bacteria escaped into the cytoplasmic compartment via a mechanism involving hemolysin A (HlyA). However, these UPEC were immediately recaptured within LC3A/B+ autophagosomes that matured into LAMP1+ autolysosomes. Thereafter, HlyA+ UPEC-containing lysosomes failed to acidify, which is an essential step for bacterial elimination. This lack of acidification was related to the inability of bacteria-harboring compartments to recruit V-ATPase proton pumps, which was attributed to the defragmentation of cytosolic microtubules by HlyA. The persistence of UPEC within LAMP1+ compartments in BECs appears to be directly linked to HlyA. Thus, through intravesicular instillation of microtubule stabilizer, this host defense response can be co-opted to reduce intracellular bacterial burden following UTIs in the bladder potentially preventing recurrence.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Ratones , Humanos , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/fisiología , Proteínas Hemolisinas , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Células Epiteliales/microbiología , Lisosomas/patología , Concentración de Iones de Hidrógeno
14.
Nat Microbiol ; 8(5): 875-888, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037942

RESUMEN

Previous urinary tract infections (UTIs) can predispose one to future infections; however, the underlying mechanisms affecting recurrence are poorly understood. We previously found that UTIs in mice cause differential bladder epithelial (urothelial) remodelling, depending on disease outcome, that impacts susceptibility to recurrent UTI. Here we compared urothelial stem cell (USC) lines isolated from mice with a history of either resolved or chronic uropathogenic Escherichia coli (UPEC) infection, elucidating evidence of molecular imprinting that involved epigenetic changes, including differences in chromatin accessibility, DNA methylation and histone modification. Epigenetic marks in USCs from chronically infected mice enhanced caspase-1-mediated cell death upon UPEC infection, promoting bacterial clearance. Increased Ptgs2os2 expression also occurred, potentially contributing to sustained cyclooxygenase-2 expression, bladder inflammation and mucosal wounding-responses associated with severe recurrent cystitis. Thus, UPEC infection acts as an epi-mutagen reprogramming the urothelial epigenome, leading to urothelial-intrinsic remodelling and training of the innate response to subsequent infection.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Ratones , Animales , Escherichia coli Uropatógena/genética , Inmunidad Entrenada , Infecciones Urinarias/microbiología , Vejiga Urinaria/microbiología , Infecciones por Escherichia coli/microbiología
15.
J Antimicrob Chemother ; 78(2): 397-410, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473954

RESUMEN

OBJECTIVES: Pharmacodynamic profiling of oral ciprofloxacin dosing for urinary tract infections caused by ceftriaxone-resistant Escherichia coli isolates with ciprofloxacin MIC ≥ 0.25 mg/L. BACKGROUND: Urine-specific breakpoints for ciprofloxacin do not exist. However, high urinary concentrations may promote efficacy in isolates with low-level resistance. METHODS: Ceftriaxone-resistant E. coli urinary isolates were screened for ciprofloxacin susceptibility. Fifteen representative strains were selected and tested using a dynamic bladder infection model. Oral ciprofloxacin dosing was simulated over 3 days (250 mg daily, 500 mg daily, 250 mg 12 hourly, 500 mg 12 hourly and 750 mg 12 hourly). The model was run for 96 h. Primary endpoint was change in bacterial density at 72 h. Secondary endpoints were follow-up change in bacterial density at 96 h and area-under-bacterial-kill-curve. Bacterial response was related to exposure (AUC0-24/MIC; Cmax/MIC). PTA was determined using Monte-Carlo simulation. RESULTS: Ninety-three clinical isolates demonstrated a trimodal ciprofloxacin MIC distribution (modal MICs at 0.016, 0.25 and 32 mg/L). Fifteen selected clinical isolates (ciprofloxacin MIC 0.25-512 mg/L) had a broad range of quinolone-resistance genes. Following ciprofloxacin exposure, E. coli ATCC 25922 (MIC 0.008 mg/L) was killed in all dosing experiments. Six isolates (MIC ≥ 16 mg/L) regrew in all experiments. Remaining isolates (MIC 0.25-8 mg/L) regrew variably after an initial period of killing, depending on simulated ciprofloxacin dose. A >95% PTA, using AUC0-24/MIC targets, supported 250 mg 12 hourly for susceptible isolates (MIC ≤ 0.25 mg/L). For isolates with MIC ≤ 1 mg/L, 750 mg 12 hourly promoted 3 log10 kill at the end of treatment (72 h), 1 log10 kill at follow-up (96 h) and 90% maximal activity (AUBKC0-96). CONCLUSIONS: Bladder infection modelling supports oral ciprofloxacin activity against E. coli with low-level resistance (ciprofloxacin MIC ≤ 1 mg/L) when using high dose therapy (750 mg 12 hourly).


Asunto(s)
Cistitis , Infecciones Urinarias , Humanos , Ciprofloxacina/farmacología , Ceftriaxona/uso terapéutico , Escherichia coli , Vejiga Urinaria/microbiología , Infecciones Urinarias/microbiología , Bacterias , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
16.
Microb Pathog ; 173(Pt A): 105817, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244593

RESUMEN

OBJECTIVES: Experiments in murine models of urinary tract infection (UTI) show that uropathogenic Escherichia coli (UPEC) form bacterial reservoirs in the bladder tissue that can survive beta lactam antibiotics and give rise to reinfection. The observed reinfection cascade suggests intracellular bacterial persistence as a possible explanation for recurrent UTI in humans. To test this hypothesis in an animal model closer to humans, we here investigated whether UPEC infecting the bladders of experimentally inoculated pigs are able to survive standard oral mecillinam treatment. Moreover, we analyzed the infected pig bladders by microscopy for the presence of intracellular UPEC colonies. METHODS: Seven pigs were experimentally inoculated with the UPEC cystitis strain, UTI89, to induce cystitis. After 5 days of infections, a 3-day oral treatment with the extracellularly active ß-lactam, mecillinam, was initiated. The infection was monitored with regular urine and blood samples. When terminated, whole bladders were removed and homogenized to quantify viable intracellular bacteria. In addition, two pigs were inoculated with UTI89pMAN01 constitutively expressing green fluorescent protein and the bladders subsequently analyzed by microscopy for bacterial location and morphology. RESULTS: Experimental inoculation resulted in cystitis in all animals. After 3-day treatment with mecillinam, no viable UPEC were detectable in urine or bladder homogenates. Microscopy analysis of pig bladders at 12 h post infection, revealed no detectable intracellular bacterial colonies and no filamentous UPEC phenotypes were identified. CONCLUSIONS: Pigs experimentally infected with UPEC completely clear their infection upon mecillinam treatment, which contrasts earlier findings from similar experiments in mice. Moreover, the hallmarks of induced UTI in mice, i.e. intracellular bacterial communities and bacterial filamentation, could not be identically reproduced in a pig model of acute UTI. This result suggests that significant differences might exist between UTI in mice and larger mammals, and therefore perhaps also between mice and humans. Additional studies are needed to reveal details on the Escherichia coli acute UTI pathogenesis cascade in larger mammals to assess to which extent observations in mice can be transferred to humans.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Ratones , Porcinos , Animales , Escherichia coli Uropatógena/genética , Vejiga Urinaria/microbiología , Amdinocilina , Reinfección , Cistitis/microbiología , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología , Bacterias , Mamíferos
17.
J Med Microbiol ; 71(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35475768

RESUMEN

Urinary tract infection (UTI) is one of the most common bacterial infections worldwide. Experimental models that accurately reflect the high susceptibility to UTI in humans have, however, been lacking. This situation has limited detailed research into the early bladder colonization by uropathogens and the early innate defence mechanisms elicited to prevent this. We recently presented a model of urinary tract infection in pigs, animals that are naturally susceptible to UTI and have greater similarity to the physiology and anatomy of the human urinary tract than traditional rodent UTI models. In the current study, we used the pig model to investigate the minimal infectious inoculum of uropathogenic Escherichia coli, the most common cause of urinary tract infection. We show that in this animal a few individual bacteria that come into contact with the urothelium can give rise to fulminant cystitis, indicating the high infectious potential of uropathogenic E. coli.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Cistitis/microbiología , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Masculino , Porcinos , Vejiga Urinaria/microbiología , Infecciones Urinarias/microbiología
18.
Annu Rev Immunol ; 40: 499-523, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471839

RESUMEN

The bladder is a major component of the urinary tract, an organ system that expels metabolic waste and excess water, which necessitates proximity to the external environment and its pathogens. It also houses a commensal microbiome. Therefore, its tissue immunity must resist pathogen invasion while maintaining tolerance to commensals. Bacterial infection of the bladder is common, with half of women globally experiencing one or more episodes of cystitis in their lifetime. Despite this, our knowledge of bladder immunity, particularly in humans, is incomplete. Here we consider the current view of tissue immunity in the bladder, with a focus on defense against infection. The urothelium has robust immune functionality, and its defensive capabilities are supported by resident immune cells, including macrophages, dendritic cells, natural killer cells, and γδ T cells. We discuss each in turn and consider why adaptive immune responses are often ineffective in preventing recurrent infection, as well as areas of priority for future research.


Asunto(s)
Infecciones Bacterianas , Vejiga Urinaria , Animales , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Macrófagos , Vejiga Urinaria/microbiología
19.
Sci Rep ; 12(1): 486, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017565

RESUMEN

Uropathogenic Escherichia coli (UPEC) may undergo a cyclic cascade of morphological alterations that are believed to enhance the potential of UPEC to evade host responses and re-infect host cell. However, knowledge on the pathogenic potential and host activation properties of UPEC during the morphological switch is limited. Microarray analysis was performed on mRNA isolated from human bladder epithelial cells (HBEP) after exposure to three different morphological states of UPEC (normal coliform, filamentous form and reverted form). Cells stimulated with filamentous bacteria showed the lowest number of significant gene alterations, although the number of enriched gene ontology classes was high suggesting diverse effects on many different classes of host genes. The normal coliform was in general superior in stimulating transcriptional activity in HBEP cells compared to the filamentous and reverted form. Top-scored gene entities activated by all three morphological states included IL17C, TNFAIP6, TNF, IL20, CXCL2, CXCL3, IL6 and CXCL8. The number of significantly changed canonical pathways was lower in HBEP cells stimulated with the reverted form (32 pathways), than in cells stimulated with the coliform (83 pathways) or filamentous bacteria (138 pathways). A host cell invasion assay showed that filamentous bacteria were unable to invade bladder cells, and that the number of intracellular bacteria was markedly lower in cells infected with the reverted form compared to the coliform. In conclusion, the morphological state of UPEC has major impact on the host bladder response both when evaluating the number and the identity of altered host genes and pathways.


Asunto(s)
Células Epiteliales/metabolismo , Infecciones por Escherichia coli/genética , Transcripción Genética , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/fisiología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Células Epiteliales/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Vejiga Urinaria/metabolismo , Escherichia coli Uropatógena/crecimiento & desarrollo
20.
Semin Cancer Biol ; 86(Pt 3): 875-884, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34979272

RESUMEN

The higher incidence of bladder cancer in men has long been attributed to environmental factors, including smoking. The fact that the sex ratio of bladder cancer remains consistently weighted toward men despite the remarkable increase in the prevalence of smoking among women suggests that other risk factors influence the incidence rates of bladder cancer. These factors may include the urinary microbiota. In this study, we provide a review of recent literature regarding the association between bladder cancer and changes in the urinary microbiota, with a focus on the potential role of uropathogens in the microbiota and sex in bladder cancer. Four databases were systematically searched up to 31 March 2021 to identify human case-controlled studies that evaluated the relationship between urinary microbiota and bladder cancer. We combined bacterial taxa that were significantly higher or lower in the bladder cancer group in each study in the urine (voided and catheterized) and tissue samples. Findings from sixteen eligible studies were analyzed. The total sample size of the included studies was 708 participants, including 449 (63.4 %) bladder cancer patients and 259 (36.6 %) participants in the control group. When considering only the taxa that have been reported in at least two different studies, we observed that with regards to neoplastic tissues, no increased taxa were reported, while Lactobacillus (2/5 of the studies on tissue samples) was increased in nonneoplastic-tissue compared to neoplastic-tissues at the genus level. In catheterized urine, Veillonella (2/3 of the studies on catheterized urine) was increased in bladder cancer patients compared to the control groups at the genus level. In voided urine, Acinetobacter, Actinomyces, Aeromonas, Anaerococcus, Pseudomonas, and Tepidomonas were increased in the bladder cancer patients, while Lactobacillus, Roseomonas, Veillonella were increased in the control groups. Regarding gender, the genus Actinotignum was increased in female participants while Streptococcus was increased in male participants at the genus level. Regarding potential uropathogens in the urinary microbiota, Escherichia-Shigella provided conflicting results, with both showing higher and lower levels in the bladder cancer groups. However, the family Enterobacteriaceae was lower in the bladder cancer groups than in the control groups. In conclusion, there is no consensus on what taxa of the urinary microbiota are associated with bladder cancer according to the sample type. Findings on the potential role of uropathogens in the urinary microbiota in bladder cancer remain inconsistent. Due to the limited number of studies, further studies on urinary microbiota and bladder cancer are needed to address this issue. Given that all publications concerning the urinary microbiota and bladder cancer have been performed using 16S rRNA gene sequencing, we propose that polyphasic approaches, including culture-dependent techniques, may allow for a more comprehensive investigation of the urinary microbiota associated with bladder cancer.


Asunto(s)
Microbiota , Neoplasias de la Vejiga Urinaria , Humanos , Femenino , Masculino , Neoplasias de la Vejiga Urinaria/etiología , Neoplasias de la Vejiga Urinaria/microbiología , ARN Ribosómico 16S/genética , Vejiga Urinaria/microbiología , Microbiota/genética , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA