Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Toxins (Basel) ; 15(9)2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37755986

RESUMEN

Diabetic neuropathic pain is one of the complications that affect a wide variety of the diabetic population and is often difficult to treat. Only a small number of patients experience pain relief, which usually comes with onerous side effects and low levels of satisfaction. The search for new analgesic drugs is necessary, given the limitations that current drugs present. Combining drugs to treat neuropathic pain has been attracting interest to improve their efficacy compared to single-drug monotherapies while also reducing dose sizes to minimize side effects. The aim of our study was to verify the antinociceptive effect of a synthetic peptide, PnPP-15, alone and combined with pregabalin, in male Swiss diabetic mice using the von Frey method. PnPP-15 is a synthetic peptide derived from PnPP19, a peptide representing a discontinuous epitope of the primary structure of the toxin PnTx2-6 from the venom of the spider Phoneutria nigriventer. The antinociceptive activity of both compounds was dose-dependent and showed synergism, which was verified by isobolographic analysis. Treatment with PnPP-15 did not cause spontaneous or forced motor changes and did not cause any damage or signs of toxicity in the analyzed organs (pancreas, lung, heart, kidney, brain, or liver). In conclusion, PnPP-15 is a great candidate for an analgesic drug against neuropathic pain caused by diabetes and exerts a synergistic effect when combined with pregabalin, allowing for even more efficient treatment.


Asunto(s)
Diabetes Mellitus Experimental , Neuralgia , Venenos de Araña , Humanos , Ratas , Ratones , Masculino , Animales , Pregabalina/farmacología , Pregabalina/uso terapéutico , Ratas Wistar , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Venenos de Araña/uso terapéutico , Venenos de Araña/toxicidad , Venenos de Araña/química , Péptidos/farmacología , Péptidos/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Neuralgia/tratamiento farmacológico
2.
Arch Toxicol ; 97(12): 3285-3301, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37707622

RESUMEN

Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.


Asunto(s)
Esfingomielina Fosfodiesterasa , Venenos de Araña , Animales , Humanos , Inflamación , Interleucina-1/metabolismo , Hidrolasas Diéster Fosfóricas/toxicidad , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo , Arañas/química , Arañas/metabolismo , Venenos de Araña/toxicidad , Picaduras de Arañas/patología , Receptores ErbB/metabolismo
3.
Pest Manag Sci ; 79(12): 4879-4885, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37506304

RESUMEN

BACKGROUND: Excessive use of chemical insecticides raises concerns about insecticide resistance, urging the development of novel insecticides. Peptide neurotoxins from spider venom are an incredibly rich source of ion channel modulators with potent insecticidal activity. A neurotoxin U1-Atypitoxin-Cs1a from the spider Calommata signata was annotated previously. It was of interest to investigate its insecticidal activity and potential molecular targets. RESULTS: Cs1a was heterologously expressed, purified and pharmacologically characterized here. The recombinant neurotoxin inhibited high-voltage-activated calcium channel currents with an median inhibitory concentration (IC50 ) value of 0.182 ± 0.026 µm on cockroach DUM neurons and thus was designated as ω-Atypitoxin-Cs1a. The recombinant Cs1a was toxic to three insect pests of agricultural importance, Nilaparvata lugens, Spodoptera frugiperda and Plutella xylostella with median lethal concentration (LD50 ) values of 0.121, 0.172 and 0.356 nmol g-1 , respectively, at 24 h postinjection. Cs1a was equivalently toxic to both insecticide-susceptible and -resistant insects. Cs1a exhibited low toxicity to Danio rerio with an LD50 of 2.316 nmol g-1 . CONCLUSION: Our results suggest that ω-Atypitoxin-Cs1a is a potent CaV channel inhibitor and an attractive candidate reagent for pest control and resistance management. © 2023 Society of Chemical Industry.


Asunto(s)
Cucarachas , Insecticidas , Venenos de Araña , Animales , Neurotoxinas/toxicidad , Insecticidas/farmacología , Insecticidas/química , Canales de Calcio/farmacología , Péptidos , Venenos de Araña/toxicidad , Venenos de Araña/química
4.
Toxins (Basel) ; 15(7)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37505687

RESUMEN

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Asunto(s)
Venenos de Araña , Ponzoñas , Animales , Ponzoñas/farmacología , Brasil , Mosquitos Vectores , Péptidos/farmacología , Insectos , Venenos de Araña/toxicidad , Venenos de Araña/química
5.
Toxins (Basel) ; 15(7)2023 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-37505705

RESUMEN

Spider venoms are composed, among other substances, of peptide toxins whose selectivity for certain physiological targets has made them powerful tools for applications such as bioinsecticides, analgesics, antiarrhythmics, antibacterials, antifungals and antimalarials, among others. Bioinsecticides are an environmentally friendly alternative to conventional agrochemicals. In this paper, the primary structure of an insecticidal peptide was obtained from the venom gland transcriptome of the ctenid spider Phoneutria depilata (Transcript ID PhdNtxNav24). The peptide contains 53 amino acids, including 10 Cys residues that form 5 disulfide bonds. Using the amino acid sequence of such peptide, a synthetic gene was constructed de novo by overlapping PCRs and cloned into an expression vector. A recombinant peptide, named delta-ctenitoxin (rCtx-4), was obtained. It was expressed, folded, purified and validated using mass spectrometry (7994.61 Da). The insecticidal activity of rCtx-4 was demonstrated through intrathoracic injection in crickets (LD50 1.2 µg/g insect) and it was not toxic to mice. rCtx-4 is a potential bioinsecticide that could have a broad spectrum of applications in agriculture.


Asunto(s)
Insecticidas , Venenos de Araña , Arañas , Ratones , Animales , Insecticidas/farmacología , Insecticidas/química , Transcriptoma , Colombia , Péptidos/farmacología , Péptidos/toxicidad , Venenos de Araña/genética , Venenos de Araña/toxicidad , Venenos de Araña/química , Arañas/genética
6.
Pestic Biochem Physiol ; 192: 105416, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105624

RESUMEN

Established dogma concerning the action of insecticidal arthropod-derived peptides (e.g., scorpion toxins), was that they acted on the peripheral nervous system and were excluded from the central nervous system (CNS) by barrier systems. Initial evidence for a CNS-directed toxicological effect following parenteral administration was for a novel peptide from the Hobo spider, Tegeneria agrestis. This toxin was inactive on peripheral sensory and motor nerves, but had a potent excitatory effect on the CNS of larval Musca domestica. Recently, a commercialized formulation of GS-omega/kappa-Hxtx-Hv1a (HXTX), derived from the venom of the Australian blue mountain funnel web spider (Hadronyche versuta) was introduced for use in agriculture by Vestaron Corp. Its primary mode of action was found to be central neuroexcitation via positive allosteric modulation of nicotinic acetylcholine receptors (nAchR) of cockroach neurons. In the present study, this peptide showed hyperexcitation followed by a decrease in firing of the Drosophila melanogaster larval CNS that was prevented by co-exposure to 100 nM α-bungarotoxin (α-BGTX), a classical nAchR noncompetitive antagonist. This effect was mirrored in isobologram analysis, which showed clear antagonism between the two toxins when injected into adult houseflies. Interestingly, U1-agatoxin-Ta1b-QA derived from Tegeneria agrestis (VST-7304) had a similar biphasic action, but showed increased nerve discharge when co-exposed with 100 nM α-BGTX, and had additive effects when injected together with α-BGTX in isobologram analyses. Binary mixtures of HXTX or VST-7304 with 30 nM nicotine showed clear evidence of synergized nerve block, which was also observed for mixtures of HXTX and VST-7304. Taken together, these data suggest that HXTX and VST-7304 have somewhat different and complementary modes of action.


Asunto(s)
Proteínas de Drosophila , Venenos de Araña , Animales , Venenos de Araña/toxicidad , Drosophila melanogaster , Australia , Péptidos/farmacología
7.
Sci Rep ; 12(1): 21597, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517485

RESUMEN

Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.


Asunto(s)
Venenos de Araña , Arañas , Animales , Arañas/química , Venenos de Araña/toxicidad , Venenos de Araña/química , Conducta Predatoria , Adaptación Fisiológica , Péptidos/toxicidad
8.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361863

RESUMEN

Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.


Asunto(s)
Venenos de Araña , Arañas , Animales , Humanos , Venenos de Araña/toxicidad , Venenos de Araña/química , Árboles , Australia , Péptidos
9.
J. venom. anim. toxins incl. trop. dis ; 28: e20210017, 2022. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1365075

RESUMEN

Background: Acylpolyamines are one of the main non-peptide compounds present in spider venom and represent a promising alternative in the search for new molecules with antimicrobial action. Methods: The venom of Acanthoscurria natalensis spider was fractionated by reverse-phase liquid chromatography (RP-HPLC) and the antimicrobial activity of the fractions was tested using a liquid growth inhibition assay. The main antimicrobial fraction containing acylpolyamines (ApAn) was submitted to two additional chromatographic steps and analyzed by MALDI-TOF. Fractions of interest were accumulated for ultraviolet (UV) spectroscopy and ESI-MS/MS analysis and for minimum inhibitory concentration (MIC) and hemolytic activity determination. Results: Five acylpolyamines were isolated from the venom with molecular masses between 614 Da and 756 Da, being named ApAn728, ApAn614a, ApAn614b, ApAn742 and ApAn756. The analysis of UV absorption profile of each ApAn and the fragmentation pattern obtained by ESI-MS/MS suggested the presence of a tyrosyl unit as chromophore and a terminal polyamine chain consistent with structural units PA43 or PA53. ApAn presented MIC between 128 µM and 256 µM against Escherichia coli and Staphylococcus aureus, without causing hemolysis against mouse erythrocytes. Conclusion: The antimicrobial and non-hemolytic properties of the analyzed ApAn may be relevant for their application as possible therapeutic agents and the identification of an unconventional chromophore for spider acylpolyamines suggests an even greater chemical diversity.(AU)


Asunto(s)
Animales , Venenos de Araña/toxicidad , Staphylococcus aureus , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Escherichia coli , Antiinfecciosos
10.
Toxins (Basel) ; 13(8)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34437425

RESUMEN

The spider peptide toxins HNTX-III and JZTX-I are a specific inhibitor and activator of TTX-S VGSCs, respectively. They play important roles in regulating MAT-LyLu cell metastasis in prostate cancer. In order to identify key biomarkers involved in the regulation of MAT-LyLu cell metastasis, iTRAQ-based quantitative phosphoproteomics analysis was performed on cells treated with HNTX-III, JZTX-I and blank. A total of 554 unique phosphorylated proteins and 1779 distinct phosphorylated proteins were identified, while 55 and 36 phosphorylated proteins were identified as differentially expressed proteins in HNTX-III and JZTX-I treated groups compared with control groups. Multiple bioinformatics analysis based on quantitative phosphoproteomics data suggested that the differentially expressed phosphorylated proteins and peptides were significantly associated with the migration and invasion of prostate tumors. Specifically, the toxins HNTX-III and JZTX-I have opposite effects on tumor formation and metastasis by regulating the expression and phosphorylation level of causal proteins. Herein, we highlighted three key proteins EEF2, U2AF2 and FLNC which were down-regulated in HNTX-III treated cells and up-regulated in JZTX-I treated cells. They played significant roles in cancer related physiological and pathological processes. The differentially expressed phosphorylated proteins identified in this study may serve as potential biomarkers for precision medicine for prostate cancer in the near future.


Asunto(s)
Péptidos/toxicidad , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Venenos de Araña/toxicidad , Animales , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Bases de Datos Factuales , Predisposición Genética a la Enfermedad , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Mapas de Interacción de Proteínas , Proteómica , Ratas
11.
Artículo en Inglés | MEDLINE | ID: mdl-34315107

RESUMEN

Calommata signata, a burrowing spider, represents a special type of predation mode in spiders, and its utilization of toxins is different from that of web-weaving spiders and wandering spiders. The existing researches on spider toxins are mainly focused on the web-weaving and wandering spiders, but little attention on that of the burrowing spiders. Through transcriptome sequencing of C. signata venom gland and the remaining part as the counterpart tissue, 25 putative neurotoxin precursors were identified. These most neurotoxins were novel because their low similarities with the known sequences except for that of over 50% similarities in four neuropeptide toxins. The 25 neuropeptide toxins were divided into five families according to the constitution of cysteines for the possible disulfide bonds and the similarities of the deduced amino acid sequences. Besides neuropeptide toxins, other potential toxins in the venom gland were also analyzed. Unlike web-weaving spiders and wandering spiders, only a few neurotoxin genes were significantly expressed in the venom gland of C. signata. In the non-peptide toxin genes, only CsTryp_SPc-1, CsPA2-1, CsVa5-2 and four PDI genes were abundantly expressed in the venom gland. The present study provided an improved understanding on the spider toxin diversity and useful information for the exploitation of spider toxins.


Asunto(s)
Neurotoxinas , Venenos de Araña , Secuencia de Aminoácidos , Animales , Humanos , Neurotoxinas/toxicidad , Venenos de Araña/genética , Venenos de Araña/toxicidad
12.
Toxins (Basel) ; 13(3)2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800031

RESUMEN

Gating modifier toxins (GMTs) isolated from venomous organisms such as Protoxin-II (ProTx-II) and Huwentoxin-IV (HwTx-IV) that inhibit the voltage-gated sodium channel NaV1.7 by binding to its voltage-sensing domain II (VSDII) have been extensively investigated as non-opioid analgesics. However, reliably predicting how a mutation to a GMT will affect its potency for NaV1.7 has been challenging. Here, we hypothesize that structure-based computational methods can be used to predict such changes. We employ free-energy perturbation (FEP), a physics-based simulation method for predicting the relative binding free energy (RBFE) between molecules, and the cryo electron microscopy (cryo-EM) structures of ProTx-II and HwTx-IV bound to VSDII of NaV1.7 to re-predict the relative potencies of forty-seven point mutants of these GMTs for NaV1.7. First, FEP predicted these relative potencies with an overall root mean square error (RMSE) of 1.0 ± 0.1 kcal/mol and an R2 value of 0.66, equivalent to experimental uncertainty and an improvement over the widely used molecular-mechanics/generalized born-surface area (MM-GB/SA) RBFE method that had an RMSE of 3.9 ± 0.8 kcal/mol. Second, inclusion of an explicit membrane model was needed for the GMTs to maintain stable binding poses during the FEP simulations. Third, MM-GB/SA and FEP were used to identify fifteen non-standard tryptophan mutants at ProTx-II[W24] predicted in silico to have a at least a 1 kcal/mol gain in potency. These predicted potency gains are likely due to the displacement of high-energy waters as identified by the WaterMap algorithm for calculating the positions and thermodynamic properties of water molecules in protein binding sites. Our results expand the domain of applicability of FEP and set the stage for its prospective use in biologics drug discovery programs involving GMTs and NaV1.7.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Péptidos/toxicidad , Venenos de Araña/toxicidad , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Sitios de Unión , Simulación por Computador , Microscopía por Crioelectrón , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Venenos de Araña/genética , Venenos de Araña/metabolismo , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo
13.
Toxicon ; 195: 104-110, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33753115

RESUMEN

This study investigated the effects of intravenous (iv) administration of recombinant Phα1ß toxin, pregabalin, and diclofenac by the intrathecal route using an animal model fibromyalgia (FM). The reserpine administration (0.25 mg/kg s. c) once daily for three consecutive days significantly induced hyperalgesia, immobility time, and sucrose consumption in mice on the 4th day. Reserpine caused hyperalgesia on the mechanical and thermal hyperalgesia on the 4th day was reverted by recombinant Phα1ß (0.2 mg/kg iv) and pregabalin (1.25 µmol/site i. t) treatments. In contrast, diclofenac (215 nmol/site i. t) was ineffective. Recombinant Phα1ß toxin, pregabalin, and diclofenac did not affect the depressive-like behavioural effect induced by reserpine on mice during the forced swim and sucrose consumption tests. The data confirmed the analgesic effect of the recombinant Phα1ß toxin administered intravenously in a fibromyalgia mouse model.


Asunto(s)
Fibromialgia , Venenos de Araña/toxicidad , Administración Intravenosa , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Fibromialgia/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Ratones , Reserpina/uso terapéutico , Venenos de Araña/administración & dosificación
14.
J. venom. anim. toxins incl. trop. dis ; 27: e20200188, 2021. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1279408

RESUMEN

Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.(AU)


Asunto(s)
Animales , Venenos de Araña/toxicidad , Arañas , Serpinas , Serina Proteasas , Mordeduras y Picaduras
15.
J. venom. anim. toxins incl. trop. dis ; 27: e20210009, 2021. tab, graf, ilus, mapas
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1279406

RESUMEN

Spider venom is a rich cocktail of neuroactive compounds designed to prey capture and defense against predators that act on neuronal membrane proteins, in particular, acetylcholinesterases (AChE) that regulate synaptic transmission through acetylcholine (ACh) hydrolysis - an excitatory neurotransmitter - and beta-secretases (BACE) that primarily cleave amyloid precursor proteins (APP), which are, in turn, relevant in the structural integrity of neurons. The present study provides preliminary evidence on the therapeutic potential of Phlogiellus bundokalbo venom against neurodegenerative diseases. Methods Spider venom was extracted by electrostimulation and fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC) and characterized by matrix-assisted laser desorption ionization-time flight mass spectrometry (MALDI-TOF-MS). Neuroactivity of the whole venom was observed by a neurobehavioral response from Terebrio molitor larvae in vivo and fractions were screened for their inhibitory activities against AChE and BACE in vitro. Results The whole venom from P. bundokalbo demonstrated neuroactivity by inducing excitatory movements from T. molitor for 15 min. Sixteen fractions collected produced diverse mass fragments from MALDI-TOF-MS ranging from 900-4500 Da. Eleven of sixteen fractions demonstrated AChE inhibitory activities with 14.34% (± 2.60e-4) to 62.05% (± 6.40e-5) compared with donepezil which has 86.34% (± 3.90e-5) inhibition (p > 0.05), while none of the fractions were observed to exhibit BACE inhibition. Furthermore, three potent fractions against AChE, F1, F3, and F16 displayed competitive and uncompetitive inhibitions compared to donepezil as the positive control. Conclusion The venom of P. bundokalbo contains compounds that demonstrate neuroactivity and anti-AChE activities in vitro, which could comprise possible therapeutic leads for the development of cholinergic compounds against neurological diseases.(AU)


Asunto(s)
Animales , Acetilcolinesterasa , Venenos de Araña/toxicidad , Neurotransmisores , Enfermedades Neurodegenerativas , Técnicas In Vitro
16.
J. venom. anim. toxins incl. trop. dis ; 27: e20210011, 2021. tab, graf, mapas, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1346438

RESUMEN

Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.(AU)


Asunto(s)
Animales , Venenos de Araña/toxicidad , Arañas , Araña Viuda Negra , Agentes Nerviosos
17.
Neurochem Int ; 140: 104824, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32841711

RESUMEN

Neuropathic pain is one of the key features of the classical phenotype of Fabry disease (FD). Acid sensing ion channels (ASICs) are H+-gated cation channels, which belong to the epithelial sodium channel/DeGenerin superfamily, sensitive to the diuretic drug Amiloride. Molecular cloning has identified several distinct ASIC subunits. In particular the ASIC1a subunit has been associated to pain and its upregulation has been documented in animal models of pain. We analyzed the expression of ASIC1a channels in cellular models that mimic the accumulation of glycosphingolipids in FD (FD-GLs) like Gb3, and LysoGb3. We used mouse primary neurons from brain cortex and hippocampus -supraspinal structures that accumulate FD-GLs-, as well as HEK293 cells. Incubation with Gb3, lysoGb3 and the inhibitor (1-deoxy-galactonojirymicin, DJG) of the enzyme α-galactosidase A (Gla) lead to the upregulation of ASIC1a channels. In addition, activation of ASIC1a results in the activation of the MAPK ERK pathway, a signaling pathway associated with pain. Moreover, accumulation of glycosphingolipids results in activation of ERK, an effect that was prevented by blocking ASIC1a channels with the specific blocker Psalmotoxin. Our results suggest that FD-GLs accumulation and triggering of the ERK pathway via ASIC channels might be involved in the mechanism responsible for pain in FD, thus providing a new therapeutic target for pain relief treatment.


Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Enfermedad de Fabry/metabolismo , Regulación hacia Arriba/fisiología , Canales Iónicos Sensibles al Ácido/genética , Animales , Células Cultivadas , Enfermedad de Fabry/genética , Enfermedad de Fabry/patología , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Péptidos/toxicidad , Venenos de Araña/toxicidad , Regulación hacia Arriba/efectos de los fármacos
18.
Toxicon ; 185: 120-128, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32668276

RESUMEN

Phoneutria nigriventer venom (PNV) is a complex mixture of toxins exerting multiple pharmacological effects that ultimately result in severe local pain at the site of the bite. It has been proposed that the PNV-induced pain is mediated by both peripheral and central mechanisms. The nociception triggered by PNV is peripherally mediated by the activation of B2, 5-HT4, NMDA, AMPA, NK1, and NK2 receptors, as well as TTXS-Na+, ASIC, and TRPV1 channels. The activation of tachykinin, glutamate and CGRP receptors along with the production of inflammatory mediators are, at least partially, responsible for the central component of pain. Despite its well established pro-nociceptive properties, PNV contains some toxins with antinociceptive activity, which have been studied in the last few years. The toxins ω-CNTX-Pn4a, ω-CNTX-Pn2a, ω-CNTX-Pn3a, κ-CNTX-Pn1a, U7-CNTX-Pn1a, δ-CNTX-Pn1a, and Γ-CNTX-Pn1a from PNV, as well as the semi-synthetic peptide PnPP-19 have been tested in different experimental models of pain showing consistent antinociceptive properties. This review aims to discuss the pro- and antinociceptive actions of PNV and its toxins, highlighting possible mechanisms involved in these apparently dualistic properties.


Asunto(s)
Dolor , Venenos de Araña/toxicidad , Arañas , Animales , Péptidos
19.
Toxicon ; 185: 76-90, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32649934

RESUMEN

This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, ß-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, ß-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.


Asunto(s)
Picaduras de Arañas , Venenos de Araña/toxicidad , Animales , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Arañas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398368

RESUMEN

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Venenos de Araña/química , Animales , Proteínas de Artrópodos/análisis , Australia , Dípteros/efectos de los fármacos , Disulfuros , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Espectrometría de Masas , Péptidos/análisis , Péptidos/química , Péptidos/genética , Filogenia , Conformación Proteica , Proteómica/métodos , Venenos de Araña/genética , Venenos de Araña/toxicidad , Arañas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA