Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 194-200, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38268403

RESUMEN

OBJECTIVES: To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its sequence and structure. METHODS: Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry; its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry; its structure was established based on iterative thread assembly refinement online analysis. RESULTS: A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 µmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its structure showed that SsTx-P2 shared a conserved helical structure. CONCLUSIONS: The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.


Asunto(s)
Secuencia de Aminoácidos , Venenos de Artrópodos , Canales de Potasio Shal , Animales , Humanos , Venenos de Artrópodos/química , Venenos de Artrópodos/farmacología , Datos de Secuencia Molecular , Péptidos/farmacología , Péptidos/aislamiento & purificación , Péptidos/química , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Bloqueadores de los Canales de Potasio/química , Canales de Potasio Shal/antagonistas & inhibidores , Quilópodos/química
2.
Toxicon ; 238: 107588, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147939

RESUMEN

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Asunto(s)
Venenos de Artrópodos , Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Neonicotinoides , Nitrocompuestos , Toxinas Biológicas , Humanos , Recién Nacido , Animales , Insecticidas/toxicidad , Glycine max , Helicoverpa armigera , Toxinas de Bacillus thuringiensis/farmacología , Larva , Insectos , Toxinas Biológicas/farmacología , Venenos de Artrópodos/farmacología , Bioensayo , Hojas de la Planta , Proteínas Bacterianas/farmacología , Proteínas Hemolisinas/toxicidad , Endotoxinas , Control Biológico de Vectores , Resistencia a los Insecticidas
3.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889297

RESUMEN

Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.


Asunto(s)
Venenos de Artrópodos , Artrópodos , Animales , Venenos de Artrópodos/química , Venenos de Artrópodos/farmacología , Artrópodos/química , Quilópodos , Péptidos/química , Proteínas/química , Ponzoñas/metabolismo
4.
Sci Rep ; 10(1): 18395, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110124

RESUMEN

Contact with stinging spines venom from several Lepidoptera larvae may result in skin lesions. In Mexico, envenomation outbreaks caused by Megalopyge opercularis were reported between 2015 and 2016. The aim of this study was to identify the venomous caterpillars in Nuevo Leon, Mexico and evaluate several biological activities of their hemolymph (HEV) and spine setae (SSV) venoms. M. opercularis was identified by cytochrome oxidase subunit (COI) designed primers. HEV and SSV extracts cytotoxic activity was assessed on the L5178Y-R lymphoma cell line. For apoptotic cells number and apoptosis, cells were stained with acridine orange/ethidium bromide and validated by DNA fragmentation. Human peripheral blood mononuclear cells (hPBMC) cytokine response to the extracts was measured by the cytometric bead array assay. Extracts effect on pro-coagulation activity on human plasma was also evaluated. HEV and SSV extracts significantly inhibited (p < 0.01) up to 63% L5178Y-R tumor cell growth at 125-500 µg/mL, as compared with 43% of Vincristine. About 79% extracts-treated tumor cells death was caused by apoptosis. Extracts stimulated (p < 0.01) up to 60% proliferation of resident murine lymphocytes, upregulated IL-1ß, IL-6, IL-8, and TNF-α production by hPBMC, and showed potent pro-coagulant effects. The pharmacological relevance of these venoms is discussed.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Venenos de Artrópodos/farmacología , Coagulantes/farmacología , Hemolinfa/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Humanos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
5.
Toxins (Basel) ; 12(2)2020 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991714

RESUMEN

Arthropods comprise a predominant and well-succeeded phylum of the animal kingdom that evolved and diversified in millions of species grouped in four subphyla, namely, Chelicerata (arachnids), Crustacea, Myriapoda (centipedes), and Hexapoda (insects) [...].


Asunto(s)
Venenos de Artrópodos , Péptidos , Animales , Venenos de Artrópodos/química , Venenos de Artrópodos/farmacología , Venenos de Artrópodos/uso terapéutico , Venenos de Artrópodos/toxicidad , Insecticidas/química , Insecticidas/farmacología , Insecticidas/uso terapéutico , Insecticidas/toxicidad , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/toxicidad
6.
Zool Res ; 41(2): 138-147, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31945809

RESUMEN

As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.


Asunto(s)
Venenos de Artrópodos/farmacología , Artrópodos/química , Péptidos/química , Animales , China , Péptidos/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Transcriptoma
7.
Toxins (Basel) ; 11(10)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557900

RESUMEN

Arthropoda is a phylum of invertebrates that has undergone remarkable evolutionary radiation, with a wide range of venomous animals. Arthropod venom is a complex mixture of molecules and a source of new compounds, including antimicrobial peptides (AMPs). Most AMPs affect membrane integrity and produce lethal pores in microorganisms, including protozoan pathogens, whereas others act on internal targets or by modulation of the host immune system. Protozoan parasites cause some serious life-threatening diseases among millions of people worldwide, mostly affecting the poorest in developing tropical regions. Humans can be infected with protozoan parasites belonging to the genera Trypanosoma, Leishmania, Plasmodium, and Toxoplasma, responsible for Chagas disease, human African trypanosomiasis, leishmaniasis, malaria, and toxoplasmosis. There is not yet any cure or vaccine for these illnesses, and the current antiprotozoal chemotherapeutic compounds are inefficient and toxic and have been in clinical use for decades, which increases drug resistance. In this review, we will present an overview of AMPs, the diverse modes of action of AMPs on protozoan targets, and the prospection of novel AMPs isolated from venomous arthropods with the potential to become novel clinical agents to treat protozoan-borne diseases.


Asunto(s)
Antiinfecciosos/farmacología , Venenos de Artrópodos/análisis , Leishmania/efectos de los fármacos , Péptidos/farmacología , Plasmodium/efectos de los fármacos , Trypanosoma/efectos de los fármacos , Antiinfecciosos/uso terapéutico , Venenos de Artrópodos/farmacología , Humanos , Sistema Inmunológico/efectos de los fármacos , Péptidos/uso terapéutico
8.
Channels (Austin) ; 13(1): 264-286, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31237176

RESUMEN

Calcium entry is central to the functional processes in mast cells and basophils that contribute to the induction and maintenance of inflammatory responses. Mast cells and basophils express an array of calcium channels, which mediate responses to diverse stimuli triggered by small bioactive molecules, physicochemical stimuli and immunological inputs including antigens and direct immune cell interactions. These cells are also highly responsive to certain venoms (such as Hymenoptera envenomations), which cause histamine secretion, cytokine release and an array of pro-inflammatory functional responses. There are gaps in our understanding of the coupling of venom exposure to specific signaling pathways such as activation of calcium channels. In the present study, we performed a current survey of a model mast cell line selected for its pleiotropic responsiveness to multiple pro-inflammatory inputs. As a heterogenous stimulus, Hymenoptera venom activates multiple classes of conductance at the population level but tend to lead to the measurement of only one type of conductance per cell, despite the cell co-expressing multiple channel types. The data show that ICRAC, IARC, and TRPV-like currents are present in the model mast cell populations and respond to venom exposure. We further assessed individual venom components, specifically secretagogues and arachidonic acid, and identified the conductances associated with these stimuli in mast cells. Single-cell calcium assays and immunofluorescence analysis show that there is heterogeneity of channel expression across the cell population, but this heterogeneity does not explain the apparent selectivity for specific channels in response to exposure to venom as a composite stimulus.


Asunto(s)
Venenos de Artrópodos/farmacología , Mordeduras y Picaduras/inmunología , Himenópteros/fisiología , Mastocitos/inmunología , Animales , Venenos de Artrópodos/inmunología , Venenos de Artrópodos/toxicidad , Histamina/inmunología , Humanos , Himenópteros/inmunología , Mastocitos/efectos de los fármacos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/inmunología
9.
Toxicon ; 158: 33-37, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30496730

RESUMEN

The millions of extant arthropod species are testament to their evolutionary success that can at least partially be attributed to venom usage, which evolved independently in at least 19 arthropod lineages. While some arthropods primarily use venom for predation (e.g., spiders and centipedes) or defense (e.g., bees and caterpillars), it can also have more specialised functions (e.g. in parasitoid wasps to paralyse arthropods for their brood to feed on) or even a combination of functions (e.g. the scorpion Parabuthus transvaalicus can deliver a prevenom for predator deterrence and a venom for predation). Most arthropod venoms are complex cocktails of water, salts, small bioactive molecules, peptides, enzymes and larger proteins, with peptides usually comprising the majority of toxins. Some spider venoms have been reported to contain >1000 peptide toxins, which function as combinatorial libraries to provide an evolutionary advantage. The astounding diversity of venomous arthropods multiplied by their enormous toxin arsenals results in an almost infinite resource for novel bioactive molecules. The main challenge for exploiting this resource is the small size of most arthropods, which can be a limitation for current venom extraction techniques. Fortunately, recent decades have seen an incredible improvement in transcriptomic and proteomic techniques that have provided increasing sensitivity while reducing sample requirements. In turn, this has provided a much larger variety of arthropod venom compounds for potential applications such as therapeutics, molecular probes for basic research, bioinsecticides or anti-parasitic drugs. This special issue of Toxicon aims to cover the breadth of arthropod venom research, including toxin evolution, pharmacology, toxin discovery and characterisation, toxin structures, clinical aspects, and potential applications.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/toxicidad , Artrópodos/química , Animales , Venenos de Artrópodos/farmacología , Evolución Biológica , Péptidos/química
10.
Curr Opin Insect Sci ; 30: 93-98, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30553492

RESUMEN

Insect toxins comprise a diverse array of chemicals ranging from small molecules, polyamines and peptide toxins. Many target nervous system and neuromuscular ion channels and so rapidly affect the behaviour of animals to which the toxin is applied or injected. Other modes of action have also been identified. Wasps, bees, flies, beetles and ants generate a rich arsenal of channel-active toxins, some of which offer selective pharmacological probes that target particular ion channels, while others act on more than one type of channel. Philanthotoxins from the digger wasp have been fruitful in adding to our understanding of ligand-gated ion channels both in the nervous system and at neuromuscular junctions. Fire ants produce the toxic alkaloid solenopsin, a molecule which has stimulated attempts to generate synthetic compounds with insecticidal activity. Apamin from bee venom targets calcium-activated potassium channels, which can in turn influence the release of neuropeptides. Melittin, another bee venom component, is a membrane-acting peptide. The saliva of the assassin bug contains toxins that target the voltage-gated calcium channels of their insect prey. Certain beetles produce diamphotoxin, a haemolytic peptide toxin with traditional use as an arrow poison and others generate leptinotarsin with similar properties. Mastoparan is a powerful peptide toxin present in the venom of wasps. Its toxic actions can be engineered out leaving a potent antimicrobial molecule of interest. In this short review we describe the actions of selected insect toxins and evaluate their potential as neuroactive pharmacological tools, candidate lead molecules for insect control and therapeutic candidates with potential antimicrobial, antiviral and anti-cancer applications.


Asunto(s)
Control de Insectos/instrumentación , Insectos/efectos de los fármacos , Toxinas Biológicas/química , Toxinas Biológicas/farmacología , Animales , Venenos de Artrópodos/química , Venenos de Artrópodos/farmacología
11.
J Pain ; 19(10): 1157-1168, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29758357

RESUMEN

Chemotherapy-induced neuropathic pain is a common dose-limiting side effect of anticancerdrugs but lacks an effective treatment strategy. Scolopendra subspinipes has been used in traditional medicine to treat chronic neuronal diseases. Moreover, pharmacopuncture with S subspinipes (SSP) produces potent analgesia in humans and experimental animals. In this study, we examined the effect of SSP into the ST36 acupoint on oxaliplatin-induced mechanical allodynia in mice. Acupoint treatment with SSP (0.5%/20 µL) significantly decreased mechanical allodynia produced by a single oxaliplatin injection (10mg/kg i.p.), which was completely prevented by acupoint preinjection of lidocaine. Intrathecal treatment with yohimbine (25 µg/5 µL), an α2-adrenoceptor antagonist, prevented the anti-allodynic effect of SSP. In contrast, a high dose (0.1mg/kg i.p.) ofclonidine,an α2-adrenoceptor agonist, suppressed oxaliplatin-induced mechanical allodynia butproduced severe side effects including hypotension, bradycardia, and motor impairment. The combination of SSP with a lower dose of clonidine (0.03 mg/kg) produced a comparable analgesic effect without side effects. Collectively, our findings demonstrate that SSP produces an analgesic effect in oxaliplatin-induced pain via neuronal conduction at the acupoint and activation of spinal α2-adrenoceptors. Moreover, acombination of low-dose clonidine with SSP represents a novel and safe therapeutic strategy for chemotherapy-induced chronic pain. PERSPECTIVE: SSP can relieve oxaliplatin-induced mechanical allodynia. Moreover, SSP potentiates clonidine-induced anti-allodynia, allowing a lower dose of clonidine with no significant side effects. The combination of SSP and low-dose clonidine might provide a novel strategy for the management of chemotherapy-induced peripheral neuropathy.


Asunto(s)
Venenos de Artrópodos/farmacología , Hiperalgesia , Neuralgia , Puntos de Acupuntura , Analgésicos/farmacología , Animales , Antineoplásicos/toxicidad , Clonidina/farmacología , Hiperalgesia/inducido químicamente , Hipotensión , Masculino , Ratones , Trastornos Motores , Neuralgia/inducido químicamente , Neuralgia/prevención & control , Oxaliplatino/toxicidad
12.
Toxicon ; 148: 172-196, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29715467

RESUMEN

Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/toxicidad , Himenópteros/química , Animales , Venenos de Artrópodos/farmacología , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Proteínas de Insectos/toxicidad , Péptidos/química , Péptidos/farmacología , Péptidos/toxicidad
13.
J Gen Physiol ; 150(7): 969-976, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29844136

RESUMEN

The adenosine triphosphate (ATP)-sensitive (KATP) channels in pancreatic ß cells couple the blood glucose level to insulin secretion. KATP channels in pancreatic ß cells comprise the pore-forming Kir6.2 and the modulatory sulfonylurea receptor 1 (SUR1) subunits. Currently, there is no high-affinity and relatively specific inhibitor for the Kir6.2 pore. The importance of developing such inhibitors is twofold. First, in many cases, the lack of such an inhibitor precludes an unambiguous determination of the Kir6.2's role in certain physiological and pathological processes. This problem is exacerbated because Kir6.2 knockout mice do not yield the expected phenotypes of hyperinsulinemia and hypoglycemia, which in part, may reflect developmental adaptation. Second, mutations in Kir6.2 or SUR1 that increase the KATP current cause permanent neonatal diabetes mellitus (PNDM). Many patients who have PNDM have been successfully treated with sulphonylureas, a common class of antidiabetic drugs that bind to SUR1 and indirectly inhibit Kir6.2, thereby promoting insulin secretion. However, some PNDM-causing mutations render KATP channels insensitive to sulphonylureas. Conceptually, because these mutations are located intracellularly, an inhibitor blocking the Kir6.2 pore from the extracellular side might provide another approach to this problem. Here, by screening the venoms from >200 animals against human Kir6.2 coexpressed with SUR1, we discovered a small protein of 54 residues (SpTx-1) that inhibits the KATP channel from the extracellular side. It inhibits the channel with a dissociation constant value of 15 nM in a relatively specific manner and with an apparent one-to-one stoichiometry. SpTx-1 evidently inhibits the channel by primarily targeting Kir6.2 rather than SUR1; it inhibits not only wild-type Kir6.2 coexpressed with SUR1 but also a Kir6.2 mutant expressed without SUR1. Importantly, SpTx-1 suppresses both sulfonylurea-sensitive and -insensitive, PNDM-causing Kir6.2 mutants. Thus, it will be a valuable tool to investigate the channel's physiological and biophysical properties and to test a new strategy for treating sulfonylurea-resistant PNDM.


Asunto(s)
Venenos de Artrópodos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Animales , Venenos de Artrópodos/química , Artrópodos , Sitios de Unión , Humanos , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Unión Proteica , Xenopus
14.
Pharmacol Ther ; 188: 176-185, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29605457

RESUMEN

The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development.


Asunto(s)
Analgésicos/farmacología , Venenos de Artrópodos/farmacología , Animales , Canales de Calcio/efectos de los fármacos , Canales de Calcio/fisiología , Humanos , Dolor/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/fisiología
15.
Curr Med Chem ; 24(29): 3116-3152, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28552052

RESUMEN

BACKGROUND: Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. CONCLUSION: In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Venenos de Artrópodos/farmacología , Proteínas de Insectos/farmacología , Neuropéptidos/farmacología , Hormonas Peptídicas/farmacología , Animales , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Péptidos Catiónicos Antimicrobianos/inmunología , Antineoplásicos/farmacología , Venenos de Artrópodos/inmunología , Descubrimiento de Drogas , Humanos , Proteínas de Insectos/inmunología , Insectos/inmunología , Neuropéptidos/inmunología , Hormonas Peptídicas/inmunología
16.
Expert Opin Drug Discov ; 11(12): 1139-1149, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27611363

RESUMEN

INTRODUCTION: Centipedes are one of the oldest and most successful lineages of venomous terrestrial predators. Despite their use for centuries in traditional medicine, centipede venoms remain poorly studied. However, recent work indicates that centipede venoms are highly complex chemical arsenals that are rich in disulfide-constrained peptides that have novel pharmacology and three-dimensional structure. Areas covered: This review summarizes what is currently known about centipede venom proteins, with a focus on disulfide-rich peptides that have novel or unexpected pharmacology that might be useful from a therapeutic perspective. The authors also highlight the remarkable diversity of constrained three-dimensional peptide scaffolds present in these venoms that might be useful for bioengineering of drug leads. Expert opinion: Like most arthropod predators, centipede venoms are rich in peptides that target neuronal ion channels and receptors, but it is also becoming increasingly apparent that many of these peptides have novel or unexpected pharmacological properties with potential applications in drug discovery and development.


Asunto(s)
Venenos de Artrópodos/química , Diseño de Fármacos , Proteínas/farmacología , Animales , Venenos de Artrópodos/farmacología , Artrópodos , Descubrimiento de Drogas/métodos , Humanos , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Proteínas/química , Proteínas/aislamiento & purificación
17.
Toxins (Basel) ; 7(3): 679-704, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25723324

RESUMEN

Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/enzimología , Venenos de Artrópodos/farmacología , Animales , Artrópodos/química , Evolución Molecular , Péptidos/química , Filogenia
18.
World J Gastroenterol ; 19(10): 1551-62, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23539679

RESUMEN

AIM: To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. METHODS: SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. RESULTS: The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1ß. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. CONCLUSION: These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB.


Asunto(s)
Antiinflamatorios/farmacología , Venenos de Artrópodos/farmacología , Proteína HMGB1/antagonistas & inhibidores , Páncreas/efectos de los fármacos , Pancreatitis/prevención & control , Enfermedad Aguda , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Amilasas/sangre , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ceruletida , Citocinas/sangre , Modelos Animales de Enfermedad , Activación Enzimática , Proteína HMGB1/metabolismo , Mediadores de Inflamación/sangre , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipasa/sangre , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Páncreas/metabolismo , Páncreas/patología , Pancreatitis/sangre , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Cell Mol Life Sci ; 70(19): 3665-93, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23525661

RESUMEN

Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/farmacología , Insecticidas/farmacología , Péptidos/farmacología , Animales , Humanos , Control de Insectos/métodos , Insectos
20.
Toxicon ; 57(4): 497-511, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21236287

RESUMEN

Many active principles produced by animals, plants and microorganisms have been employed in the development of new drugs to treat diseases such as cancer. Among the animals that produce pharmacologically active molecules capable of interfering in human cellular physiology, the highlights are venomous arthropods, such as scorpions, bees, wasps, spiders, ants and caterpillars. The substances found in the venom of these animals present great potential as anti-tumor agents. In this review, we present the main results of years of research involving the active compounds of arthropods venoms that have anti-cancer activity.


Asunto(s)
Antineoplásicos/farmacología , Venenos de Artrópodos/farmacología , Artrópodos/fisiología , Neoplasias/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antineoplásicos/química , Venenos de Artrópodos/química , Humanos , Datos de Secuencia Molecular , Mapeo Peptídico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA