RESUMEN
One third of all emerging infectious diseases are vector-borne, with no licensed antiviral therapies available against any vector-borne viruses. Zika virus and Usutu virus are two emerging flaviviruses transmitted primarily by mosquitoes. These viruses modulate different host pathways, including the PI3K/AKT/mTOR pathway. Here, we report the effect on ZIKV and USUV replication of two AKT inhibitors, Miransertib (ARQ-092, allosteric inhibitor) and Capivasertib (AZD5363, competitive inhibitor) in different mammalian and mosquito cell lines. Miransertib showed a stronger inhibitory effect against ZIKV and USUV than Capivasertib in mammalian cells, while Capivasertib showed a stronger effect in mosquito cells. These findings indicate that AKT plays a conserved role in flavivirus infection, in both the vertebrate host and invertebrate vector. Nevertheless, the specific function of AKT may vary depending on the host species. These findings indicate that AKT may be playing a conserved role in flavivirus infection in both, the vertebrate host and the invertebrate vector. However, the specific function of AKT may vary depending on the host species. A better understanding of virus-host interactions is therefore required to develop new treatments to prevent human disease and new approaches to control transmission by insect vectors.
Asunto(s)
Infecciones por Flavivirus , Flavivirus , Proteínas Proto-Oncogénicas c-akt , Replicación Viral , Virus Zika , Animales , Flavivirus/fisiología , Flavivirus/efectos de los fármacos , Flavivirus/genética , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Línea Celular , Virus Zika/fisiología , Virus Zika/efectos de los fármacos , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/transmisión , Vertebrados/virología , Antivirales/farmacología , Mosquitos Vectores/virología , Chlorocebus aethiops , Culicidae/virología , Interacciones Huésped-PatógenoRESUMEN
Progesterone (P4) acts as a key conserved signalling molecule in vertebrate reproduction. P4 is especially important for mature sperm physiology and subsequent reproductive success. "CatSpermasome", a multi-unit molecular complex, has been suggested to be the main if not the only P4-responsive atypical Ca2+-ion channel present in mature sperm. Altogether, here we analyse the protein sequences of CatSper1-4 from more than 500 vertebrates ranging from early fishes to humans. CatSper1 becomes longer in mammals due to sequence gain mainly at the N-terminus. Overall the conservation of full-length CatSper1-4 as well as the individual TM regions remain low. The lipid-water-interface residues (i.e. a 5 amino acid stretch sequence present on both sides of each TM region) also remain highly diverged. No specific patterns of amino acid distributions were observed. The total frequency of positively charged, negatively charged or their ratios do not follow in any specific pattern. Similarly, the frequency of total hydrophobic, total hydrophilic residues or even their ratios remain random and do not follow any specific pattern. We noted that the CatSper1-4 genes are missing in amphibians and the CatSper1 gene is missing in birds. The high variability of CatSper1-4 and gene-loss in certain clades indicate that the "CatSpermasome" is not the only P4-responsive ion channel. Data indicate that the molecular evolution of CatSper is mostly guided by diverse hydrophobic ligands rather than only P4. The comparative data also suggest possibilities of other Ca2+-channel/s in vertebrate sperm that can also respond to P4.
Asunto(s)
Canales de Calcio , Progesterona , Espermatozoides , Masculino , Animales , Espermatozoides/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/química , Progesterona/metabolismo , Humanos , Vertebrados/genética , Vertebrados/metabolismo , Secuencia de Aminoácidos , Secuencia ConservadaRESUMEN
Plastic pollution is a widespread and growing concern due to its transformation into microplastics (MPs), which can harm organisms and ecosystems. This study, aimed to identify plastic pollution in the feces of terrestrial vertebrates using convenience sampling both inside and outside protected areas in Western Thailand. We hypothesized that MPs are likely to be detectable in the feces of all vertebrate species, primarily in the form of small black fragments. We predicted varying quantities of MPs in the feces of the same species across different protected areas. Furthermore, we expected that factors indicating human presence, landscape characteristics, scat weight, and the MP abundance in water, soils, and sediments would influence the presence of plastics in feces. Among 12 terrestrial species studied, potential MPs were found in 41.11% of 90 samples, totaling 83 pieces across eight species including the Asian elephant (Elephas maximus), Eld's deer (Rucervus eldii), Dhole (Cuon alpinus), Gaur (Bos gaurus), Sambar deer (Rusa unicolor), Wild boar (Sus scrofa), Northern red muntjac (Muntiacus vaginalis), and Butterfly lizard (Leiolepis belliana). Specifically, 3.61% of all potential MPs (three pieces) were macroplastics, and the remaining 96.39% were considered potential MPs with the abundance of 0.92 ± 1.89 items.scat-1 or 8.69 ± 32.56 items.100 g-1 dw. There was an association between the numbers of feces with and without potential plastics and species (χ2 = 20.88, p = 0.012). Most potential plastics were fibers (95.18%), predominantly black (56.63%) or blue (26.51%), with 74.70% smaller than two millimeters. Although there were no significant associations between species and plastic morphologies, colors, and sizes, the abundance classified by these characteristics varied significantly. FTIR identified 52.38% as natural fibers, 38.10% as synthetic fibers (rayon, polyurethane (PUR), polyethylene terephthalate (PET), polypropylene (PP), and PUR blended with cotton), and 9.52% as fragments of PET and Polyvinyl Chloride (PVC). Human-related factors were linked to the occurrence of potential plastics found in the feces of land-dwelling wildlife. This study enhances the understanding of plastic pollution in tropical protected areas, revealing the widespread of MPs even in small numbers from the areas distant from human settlements. Monitoring plastics in feces offers a non-invasive method for assessing plastic pollution in threatened species, as it allows for easy collection and taxonomic identification without harming live animals. However, stringent measures to assure the quality are necessitated to prevent exogenous MP contamination. These findings underscore the importance of raising awareness about plastic pollution in terrestrial ecosystems, especially regarding plastic products from clothing and plastic materials used in agriculture and irrigation systems.
Asunto(s)
Monitoreo del Ambiente , Heces , Animales , Heces/química , Tailandia , Monitoreo del Ambiente/métodos , Plásticos/efectos adversos , Microplásticos/análisis , Contaminación Ambiental/análisis , Contaminación Ambiental/efectos adversos , Vertebrados , Contaminantes Ambientales/análisis , HumanosRESUMEN
The aim of this study was to record Centrorhynchus sp. associated with the exotic species Aquarana catesbeiana (bullfrog) in southern Brazil and to present a checklist of vertebrate hosts in South America. Twenty-nine adults and juveniles of A. catesbeiana were collected in Capão do Leão, state of Rio Grande do Sul, Brazil, between October 2019 and December 2020. We found 275 specimens of Centrorhynchus sp. cystacanths in the stomach musculature and coelomic cavity of 55.1% of hosts (16). There was no significant differences in the prevalence and mean intensity of infection with cystacanths when compared males and females of A. catesbeiana. The prevalence was significantly higher in adults than in juveniles. The checklist presents 106 species of vertebrate hosts and 14 taxa of Centrorhynchus recorded in nine South American countries. Avian were the main definitive hosts of Centrorhynchus spp. and snakes Dipsadidae, anurans Hylidae and Leptodactylidae the main paratenic hosts in South America. This is the first record of Centrorhynchus cystacanths in A. catesbeiana in the South America. The study provides tools to help understand the parasitic relationships between species of Centrorhynchus and A. catesbeiana and other hosts in areas where bullfrog have been introduced.
Asunto(s)
Acantocéfalos , Anuros , Lista de Verificación , Animales , Anuros/parasitología , Femenino , Masculino , Brasil , Acantocéfalos/clasificación , Acantocéfalos/aislamiento & purificación , América del Sur , Prevalencia , Helmintiasis Animal/parasitología , Helmintiasis Animal/epidemiología , Vertebrados/parasitología , Aves/parasitología , Serpientes/parasitologíaRESUMEN
Spexin (SPX, NPQ) is a 14-amino acid neuroactive peptide identified using bioinformatics. This amino acid sequence of the mature spexin peptide has been highly conserved during species evolution and is widely distributed in the central nervous system and peripheral tissues and organs. Therefore, spexin may play a role in various biological functions. Spexin, the cognate ligand for GALR2/3, acting as a neuromodulator or endocrine signaling factor, can inhibit reproductive performance. However, controversies and gaps in knowledge persist regarding spexin-mediated regulation of animal reproductive functions. This review focuses on the hypothalamic-pituitary-gonadal axis and provides a comprehensive overview of the impact of spexin on reproduction. Through this review, we aim to enhance understanding and obtain in-depth insights into the regulation of reproduction by spexin peptides, thereby providing a scientific basis for future investigations into the molecular mechanisms underlying the influence of spexin on reproductive function. Such investigations hold potential benefits for optimizing farming practices in livestock, poultry, and fish industries.
Asunto(s)
Hormonas Peptídicas , Reproducción , Vertebrados , Animales , Reproducción/fisiología , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/fisiología , Vertebrados/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiologíaRESUMEN
The function of germ cells in somatic growth and aging has been demonstrated in invertebrate models but remains unclear in vertebrates. We demonstrated sex-dependent somatic regulation by germ cells in the short-lived vertebrate model Nothobranchius furzeri. In females, germ cell removal shortened life span, decreased estrogen, and increased insulin-like growth factor 1 (IGF-1) signaling. In contrast, germ cell removal in males improved their health with increased vitamin D signaling. Body size increased in both sexes but was caused by different signaling pathways, i.e., IGF-1 and vitamin D in females and males, respectively. Thus, vertebrate germ cells regulate somatic growth and aging through different pathways of the endocrine system, depending on the sex, which may underlie the sexual difference in reproductive strategies.
Asunto(s)
Envejecimiento , Células Germinativas , Factor I del Crecimiento Similar a la Insulina , Animales , Células Germinativas/metabolismo , Células Germinativas/citología , Masculino , Femenino , Envejecimiento/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Vertebrados , Transducción de Señal , Caracteres Sexuales , Tamaño Corporal , Vitamina D/metabolismo , Estrógenos/metabolismoRESUMEN
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Asunto(s)
Centrómero , Cromatina , Proteínas Cromosómicas no Histona , Vertebrados , Centrómero/metabolismo , Centrómero/ultraestructura , Animales , Cromatina/metabolismo , Cromatina/genética , Cromatina/ultraestructura , Cromatina/química , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Vertebrados/genética , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Cohesinas , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteína B del Centrómero/metabolismo , Proteína B del Centrómero/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestructura , Adenosina TrifosfatasasRESUMEN
While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.
Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Osteoblastos , Fenotipo , Regiones Promotoras Genéticas , Xenopus , Animales , Humanos , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética , Xenopus/genética , Elementos de Facilitación Genéticos/genética , Cromatina/metabolismo , Cromatina/genética , Evolución Biológica , Vertebrados/genética , Huesos/metabolismo , Osteogénesis/genéticaRESUMEN
To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).
Asunto(s)
Evolución Biológica , Peces , Fósiles , Arteria Pulmonar , Animales , Arteria Pulmonar/anatomía & histología , Peces/anatomía & histología , Vertebrados/anatomía & histología , Pulmón/irrigación sanguínea , FilogeniaRESUMEN
Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)-(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone Exaiptasia diaphana (LOC110241027) and (330-SPSFLCI-L-SLL-340) identified in a tropical bird Opisthocomus hoazin protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat Neotoma lepida A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in Gavia stellate (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals Neotoma lepida, Aves Erythrura gouldiae, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.
Asunto(s)
Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/genética , Vertebrados/clasificación , Simulación por Computador , Secuencia de Aminoácidos , HumanosRESUMEN
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Animales , Invertebrados , Inmunidad Adaptativa , VertebradosRESUMEN
In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.
Asunto(s)
Oryzias , Animales , Oryzias/metabolismo , Estaciones del Año , Reproducción/fisiología , Vertebrados/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tirotropina/metabolismoRESUMEN
Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.
Asunto(s)
Hepcidinas , Lampreas , Animales , Lampreas/genética , Lampreas/metabolismo , Hepcidinas/genética , Secuencia de Aminoácidos , Cisteína , Proteínas de Peces/química , Vertebrados/metabolismo , Péptidos/genética , Antibacterianos/farmacología , FilogeniaRESUMEN
RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.
Asunto(s)
Empalme Alternativo , Proteína de Unión al Tracto de Polipirimidina , Vertebrados , Animales , Humanos , Ratones , Ratas , Exones/genética , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fosforilación , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Especificidad de la Especie , Vertebrados/genética , Pollos/genéticaRESUMEN
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Asunto(s)
Gonadotropinas , Hormonas Hipotalámicas , Animales , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Péptidos/metabolismo , Hipotálamo/metabolismo , Reproducción/fisiología , Peces/metabolismo , Mamíferos/metabolismo , Hormonas Hipotalámicas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismoRESUMEN
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Asunto(s)
Anguila Babosa , Animales , Filogenia , Anguila Babosa/genética , Duplicación de Gen , Vertebrados/genética , Genoma , Lampreas/genéticaRESUMEN
Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.
Asunto(s)
Macrófagos , Opsonización , Animales , Macrófagos/metabolismo , Activación de Complemento , Riñón/metabolismo , Vertebrados , Colectinas/metabolismo , Proteínas de Peces/metabolismo , Mamíferos/metabolismoRESUMEN
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.
Asunto(s)
Evolución Molecular , Anguila Babosa , Vertebrados , Animales , Anguila Babosa/anatomía & histología , Anguila Babosa/citología , Anguila Babosa/embriología , Anguila Babosa/genética , Lampreas/genética , Filogenia , Vertebrados/genética , Sintenía , Poliploidía , Linaje de la CélulaRESUMEN
Recent studies have demonstrated the important regulatory role of circRNAs, but an in-depth understanding of the comprehensive landscape of circRNAs across various species still remains unexplored. The current circRNA databases are often species-restricted or based on outdated datasets. To address this challenge, we have developed the circAtlas 3.0 database, which contains a rich collection of 2674 circRNA sequencing datasets, curated to delineate the landscape of circRNAs within 33 distinct tissues spanning 10 vertebrate species. Notably, circAtlas 3.0 represents a substantial advancement over its precursor, circAtlas 2.0, with the number of cataloged circRNAs escalating from 1 007 087 to 3 179 560, with 2 527 528 of them being reconstructed into full-length isoforms. circAtlas 3.0 also introduces several notable enhancements, including: (i) integration of both Illumina and Nanopore sequencing datasets to detect circRNAs of extended lengths; (ii) employment of a standardized nomenclature scheme for circRNAs, providing information of the host gene and full-length circular exons; (iii) inclusion of clinical cancer samples to explore the biological function of circRNAs within the context of cancer and (iv) links to other useful resources to enable user-friendly analysis of target circRNAs. The updated circAtlas 3.0 provides an important platform for exploring the evolution and biological implications of vertebrate circRNAs, and is freely available at http://circatlas.biols.ac.cn and https://ngdc.cncb.ac.cn/circatlas.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Neoplasias , ARN Circular , Animales , Humanos , Neoplasias/genética , Vertebrados/genéticaRESUMEN
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.