Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836056

RESUMEN

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Asunto(s)
Vesículas Extracelulares , Interacciones Huésped-Patógeno , Mycobacterium tuberculosis , Tuberculosis , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Mycobacterium tuberculosis/inmunología , Humanos , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/metabolismo , Interacciones Huésped-Patógeno/inmunología , Animales
2.
Front Immunol ; 15: 1388769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726003

RESUMEN

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , MicroARNs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Organoides/inmunología , MicroARNs/genética , Microambiente Tumoral/inmunología , Transducción de Señal , Células Tumorales Cultivadas , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos
3.
Front Immunol ; 15: 1388574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726015

RESUMEN

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología , Animales , Biomarcadores de Tumor/metabolismo , Barrera Hematoencefálica/metabolismo
4.
Cell Death Dis ; 15(5): 377, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816455

RESUMEN

Gastric cancer (GC) is a major global health issue, being the fifth most prevalent cancer and the third highest contributor to cancer-related deaths. Although treatment strategies for GC have diversified, the prognosis for advanced GC remains poor. Hence, there is a critical need to explore new directions for GC treatment to enhance diagnosis, treatment, and patient prognosis. Extracellular vesicles (EVs) have emerged as key players in tumor development and progression. Different sources of EVs carry different molecules, resulting in distinct biological functions. For instance, tumor-derived EVs can promote tumor cell proliferation, alter the tumor microenvironment and immune response, while EVs derived from immune cells carry molecules that regulate immune function and possess tumor-killing capabilities. Numerous studies have demonstrated the crucial role of EVs in the development, immune escape, and immune microenvironment remodeling in GC. In this review, we discuss the role of GC-derived EVs in immune microenvironment remodeling and EVs derived from immune cells in GC development. Furthermore, we provide an overview of the potential uses of EVs in immunotherapy for GC.


Asunto(s)
Vesículas Extracelulares , Neoplasias Gástricas , Escape del Tumor , Microambiente Tumoral , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Microambiente Tumoral/inmunología , Muerte Celular , Animales , Inmunoterapia/métodos
5.
Front Immunol ; 15: 1346587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690261

RESUMEN

Extracellular vesicles (EVs) are important cell-to-cell communication mediators. This paper focuses on the regulatory role of tumor-derived EVs on macrophages. It aims to investigate the causes of tumor progression and therapeutic directions. Tumor-derived EVs can cause macrophages to shift to M1 or M2 phenotypes. This indicates they can alter the M1/M2 cell ratio and have pro-tumor and anti-inflammatory effects. This paper discusses several key points: first, the factors that stimulate macrophage polarization and the cytokines released as a result; second, an overview of EVs and the methods used to isolate them; third, how EVs from various cancer cell sources, such as hepatocellular carcinoma, colorectal carcinoma, lung carcinoma, breast carcinoma, and glioblastoma cell sources carcinoma, promote tumor development by inducing M2 polarization in macrophages; and fourth, how EVs from breast carcinoma, pancreatic carcinoma, lungs carcinoma, and glioblastoma cell sources carcinoma also contribute to tumor development by promoting M2 polarization in macrophages. Modified or sourced EVs from breast, pancreatic, and colorectal cancer can repolarize M2 to M1 macrophages. This exhibits anti-tumor activities and offers novel approaches for tumor treatment. Therefore, we discovered that macrophage polarization to either M1 or M2 phenotypes can regulate tumor development. This is based on the description of altering macrophage phenotypes by vesicle contents.


Asunto(s)
Vesículas Extracelulares , Activación de Macrófagos , Macrófagos , Neoplasias , Animales , Humanos , Comunicación Celular/inmunología , Citocinas/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología
6.
J Autoimmun ; 146: 103235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696926

RESUMEN

Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.


Asunto(s)
Artritis Experimental , Linfocitos B , Vesículas Extracelulares , Células T Auxiliares Foliculares , Animales , Artritis Experimental/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Células T Auxiliares Foliculares/inmunología , Masculino , Artritis Reumatoide/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Traslado Adoptivo , Ligando de CD40/metabolismo , Ligando de CD40/inmunología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Índice de Severidad de la Enfermedad , Femenino
7.
Nat Commun ; 15(1): 3884, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719909

RESUMEN

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Asunto(s)
Antígeno B7-1 , Antígeno B7-H1 , Vesículas Extracelulares , Receptor de Muerte Celular Programada 1 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Ratones , Línea Celular Tumoral , Femenino , Neoplasias/inmunología , Neoplasias/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Masculino , Microambiente Tumoral/inmunología
8.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749193

RESUMEN

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Asunto(s)
Antígeno CD47 , Progresión de la Enfermedad , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Humanos , Animales , Línea Celular Tumoral , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Escape del Tumor , Evasión Inmune , Microambiente Tumoral/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Femenino , Estadificación de Neoplasias
9.
Int Immunopharmacol ; 133: 112150, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669949

RESUMEN

Extracellular vesicles (EVs), which have a lipid nano-sized structure, are known to contain the active components of parental cells and play a crucial role in intercellular communication. The progression and metastasis of tumors are influenced by EVs derived from immune cells, which can simultaneously stimulate and suppress immune responses. In the past few decades, there has been a considerable focus on EVs due to their potential in various areas such as the development of vaccines, delivering drugs, making engineered modifications, and serving as biomarkers for diagnosis and prognosis. This review focuses on the substance information present in EVs derived from innate and adaptive immune cells, their effects on the immune system, and their applications in cancer treatment. While there are still challenges to overcome, it is important to explore the composition of immune cells released vesicles and their potential therapeutic role in tumor therapy. The review also highlights the current limitations and future prospects in utilizing EVs for treatment purposes.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Vesículas Extracelulares/inmunología , Animales , Inmunoterapia/métodos , Inmunidad Innata , Inmunidad Adaptativa , Vacunas contra el Cáncer/inmunología
10.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669946

RESUMEN

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Neutrófilos , Factor de Transcripción STAT3 , Células Th17 , Células Th17/inmunología , Humanos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Neutrófilos/inmunología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Interleucina-17/metabolismo , Pulmón/inmunología , Pulmón/patología , Ratones Endogámicos C57BL , Células Cultivadas , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Asma/inmunología , Asma/terapia , Masculino , Transducción de Señal , Femenino , Modelos Animales de Enfermedad
11.
Analyst ; 149(11): 3195-3203, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38651605

RESUMEN

Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs. The channel of the device was modified with degradable gelatin nanoparticles (∼220 nm) to increase the surface roughness, and subsequently treated with CD63 antibodies. The acoustic-induced streaming would prolong the rotation time of the EVs in the targeted continuous flow area, improving their aggregation towards the surrounding pillars and subsequent capture by the specific CD63 antibodies. Consequently, the capture efficiency of the device was improved when the signal was on, as evidenced by enhanced fluorescence intensity in the main channel. It is demonstrated that the acoustofluidic device could enhance the immune capture of EVs through acoustic mixing, showcasing great potential in the rapid and fast detection of EVs in liquid biopsy applications.


Asunto(s)
Vesículas Extracelulares , Gelatina , Nanopartículas , Tetraspanina 30 , Gelatina/química , Vesículas Extracelulares/química , Vesículas Extracelulares/inmunología , Nanopartículas/química , Humanos , Tetraspanina 30/metabolismo , Acústica , Dispositivos Laboratorio en un Chip
12.
Clin Exp Immunol ; 216(3): 230-239, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38518192

RESUMEN

Immune checkpoints (ICPs) play a crucial role in regulating the immune response. In the tumor, malignant cells can hijack the immunosuppressive effects of inhibitory ICPs to promote tumor progression. Extracellular vesicles (EVs) are produced by a variety of cells and contain bioactive molecules on their surface or within their lumen. The expression of ICPs has also been detected in EVs. In vitro and in vivo studies have shown that extracellular vesicle immune checkpoints (EV ICPs) have immunomodulatory effects and are involved in tumor immunity. EV ICPs isolated from the peripheral blood of cancer patients are closely associated with the tumor progression and the prognosis of cancer patients. Blocking inhibitory ICPs has been recognized as an effective strategy in cancer treatment. However, the efficacy of immune checkpoint inhibitors (ICIs) in cancer treatment is hindered by the emergence of therapeutic resistance, which limits their widespread use. Researchers have demonstrated that EV ICPs are correlated with clinical response to ICIs therapy and were involved in therapeutic resistance. Therefore, it is essential to investigate the immunomodulatory effects, underlying mechanisms, and clinical significance of EV ICPs in cancer. This review aims to comprehensively explore these aspects. We have provided a comprehensive description of the cellular origins, immunomodulatory effects, and clinical significance of EV ICPs in cancer, based on relevant studies.


Asunto(s)
Vesículas Extracelulares , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Vesículas Extracelulares/inmunología , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunomodulación , Animales , Proteínas de Punto de Control Inmunitario/metabolismo , Proteínas de Punto de Control Inmunitario/genética , Inmunoterapia/métodos , Microambiente Tumoral/inmunología
13.
Adv Sci (Weinh) ; 11(17): e2308235, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353384

RESUMEN

Personalized cancer vaccines based on resected tumors from patients is promising to address tumor heterogeneity to inhibit tumor recurrence or metastasis. However, it remains challenge to elicit immune activation due to the weak immunogenicity of autologous tumor antigens. Here, a hybrid membrane cancer vaccine is successfully constructed by membrane fusion to enhance adaptive immune response and amplify personalized immunotherapy, which formed a codelivery system for autologous tumor antigens and immune adjuvants. Briefly, the functional hybrid vesicles (HM-NPs) are formed by hybridizing ginseng-derived extracellular vesicles-like particles (G-EVLPs) with the membrane originated from the resected autologous tumors. The introduction of G-EVLPs can enhance the phagocytosis of autologous tumor antigens by dendritic cells (DCs) and facilitate DCs maturation through TLR4, ultimately activating tumor-specific cytotoxic T lymphocytes (CTLs). HM-NPs can indeed strengthen specific immune responses to suppress tumors recurrence and metastasis including subcutaneous tumors and orthotopic tumors. Furthermore, a long-term immune protection can be obtained after vaccinating with HM-NPs, and prolonging the survival of animals. Overall, this personalized hybrid autologous tumor vaccine based on G-EVLPs provides the possibility of mitigating tumor recurrence and metastasis after surgery while maintaining good biocompatibility.


Asunto(s)
Vacunas contra el Cáncer , Vesículas Extracelulares , Recurrencia Local de Neoplasia , Panax , Vacunas contra el Cáncer/inmunología , Animales , Vesículas Extracelulares/inmunología , Ratones , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/prevención & control , Medicina de Precisión/métodos , Modelos Animales de Enfermedad , Membrana Celular/metabolismo , Membrana Celular/inmunología , Humanos , Metástasis de la Neoplasia/inmunología , Vacunación/métodos , Células Dendríticas/inmunología , Femenino , Línea Celular Tumoral
14.
Cell Transplant ; 32: 9636897221148775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36661068

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.


Asunto(s)
Exosomas , Lupus Eritematoso Sistémico , Células Madre Mesenquimatosas , MicroARNs , Humanos , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Exosomas/genética , Exosomas/inmunología , Vesículas Extracelulares/genética , Vesículas Extracelulares/inmunología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/terapia , MicroARNs/genética , MicroARNs/inmunología , Células Madre Mesenquimatosas/inmunología
15.
Biochimie ; 207: 33-48, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36427681

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.


Asunto(s)
Vesículas Extracelulares , Mesodermo , Regeneración , Medicina Regenerativa , Células Madre , Vesículas Extracelulares/clasificación , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Medicina Regenerativa/normas , Medicina Regenerativa/tendencias , Mesodermo/citología , Células Madre/citología , Humanos , Animales , Biotecnología/métodos , Biotecnología/normas , Biotecnología/tendencias
16.
J Extracell Vesicles ; 11(1): e12176, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973063

RESUMEN

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance. In this work, we investigated the immunomodulatory properties of the NKG2D ligand MICA*008 associated to distinct populations of EVs (i.e., small extracellular vesicles [sEVs] and medium size extracellular vesicles [mEVs]). By using as model a human MICA*008-transfected multiple myeloma (MM) cell line, we found that this ligand is present on both vesicle populations. Interestingly, our findings reveal that NKG2D is specifically involved in the uptake of vesicles expressing its cognate ligand. We provide evidence that MICA*008-expressing sEVs and mEVs are able on one hand to activate NK cells but, following prolonged stimulation induce a sustained NKG2D downmodulation leading to impaired NKG2D-mediated functions. Moreover, our findings show that MICA*008 can be transferred by vesicles to NK cells causing fratricide. Focusing on MM as a clinically and biologically relevant model of tumour-NK cell interactions, we found enrichment of EVs expressing MICA in the bone marrow of a cohort of patients. All together our results suggest that the accumulation of NKG2D ligands associated to vesicles in the tumour microenvironment could favour the suppression of NK cell activity either by NKG2D down-modulation or by fratricide of NK cell dressed with EV-derived NKG2D ligands.


Asunto(s)
Vesículas Extracelulares/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Vigilancia Inmunológica , Células Asesinas Naturales/inmunología , Mieloma Múltiple/inmunología , Anciano , Anciano de 80 o más Años , Médula Ósea/inmunología , Muerte Celular/inmunología , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Inmunomodulación , Interferón gamma/metabolismo , Ligandos , Masculino , Persona de Mediana Edad , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Escape del Tumor
17.
FEBS J ; 289(2): 417-435, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355516

RESUMEN

Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.


Asunto(s)
Vesículas Extracelulares/genética , Inflamación/genética , Sepsis/genética , Sindecano-2/genética , Animales , Polaridad Celular/genética , Polaridad Celular/inmunología , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/microbiología , Regulación del Desarrollo de la Expresión Génica/genética , Silenciador del Gen , Humanos , Inmunidad/genética , Inflamación/microbiología , Inflamación/patología , Inflamación/terapia , Macrófagos/inmunología , Macrófagos/microbiología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones , Neutrófilos/inmunología , Neutrófilos/microbiología , Comunicación Paracrina/genética , Fagocitosis/genética , Sepsis/microbiología , Sepsis/patología , Sepsis/terapia
18.
J Leukoc Biol ; 111(1): 33-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34342045

RESUMEN

Extracellular vesicles (EVs) have emerged as key regulators of immune function across multiple diseases. Severe burn injury is a devastating trauma with significant immune dysfunction that results in an ∼12% mortality rate due to sepsis-induced organ failure, pneumonia, and other infections. Severe burn causes a biphasic immune response: an early (0-72 h) hyper-inflammatory state, with release of damage-associated molecular pattern molecules, such as high-mobility group protein 1 (HMGB1), and proinflammatory cytokines (e.g., IL-1ß), followed by an immunosuppressive state (1-2+ wk post injury), associated with increased susceptibility to life-threatening infections. We have reported that early after severe burn injury HMGB1 and IL-1ß are enriched in plasma EVs. Here we tested the impact of EVs isolated after burn injury on phenotypic and functional consequences in vivo and in vitro using adoptive transfers of EV. EVs isolated early from mice that underwent a 20% total body surface area burn injury (burn EVs) caused similar hallmark cytokine responses in naïve mice to those seen in burned mice. Burn EVs transferred to RAW264.7 macrophages caused similar functional (i.e., cytokine secretion) and immune gene expression changes seen with their associated phase of post-burn immune dysfunction. Burn EVs isolated early (24 h) induced MCP-1, IL-12p70, and IFNγ, whereas EVs isolated later blunted RAW proinflammatory responses to bacterial endotoxin (LPS). We also describe significantly increased HMGB1 cargo in burn EVs purified days 1 to 7 after injury. Thus, burn EVs cause immune outcomes in naïve mice and macrophages similar to findings after severe burn injury, suggesting EVs promote post-burn immune dysfunction.


Asunto(s)
Quemaduras/inmunología , Vesículas Extracelulares/inmunología , Macrófagos/inmunología , Animales , Quemaduras/sangre , Quemaduras/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/patología , Femenino , Proteína HMGB1/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Células RAW 264.7
19.
Cancer Lett ; 530: 1-7, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906625

RESUMEN

The interdependency between cancer cells and immune cells is an important link in understanding cancer pathogenesis. T cells are important immune cells that are able to either impede or promote tumor growth. Extracellular vesicles or EVs are membrane-encapsulated vesicles that are released by both cancer and immune cells that can act as communicators. Studies have shown that tumor-derived EVs can interact with immune cells, particularly T cells. Vice versa, T cells-derived EVs have also been shown to possess immunomodulatory roles. Therefore, the purpose of this mini-review is to understand the role of tumor-derived EVs and T-cells derived EVs on cancer immunosuppression especially the interweaving role of different types of EVs and how it affects tumor immunity. We also discuss the role of EVs in different types of T cells namely CD8+, CD4+ Th17 and Treg cells. More importantly, we include the limitations and future directions involving this type of research. This will further elucidate our understanding of the important functions of these tiny mediators.


Asunto(s)
Vesículas Extracelulares/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Humanos , Terapia de Inmunosupresión/métodos
20.
Am J Physiol Renal Physiol ; 322(2): F150-F163, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927448

RESUMEN

Proteinuria predicts accelerated decline in kidney function in kidney transplant recipients (KTRs). We hypothesized that aberrant filtration of complement factors causes intraluminal activation, apical membrane attack on tubular cells, and progressive injury. Biobanked samples from two previous studies in albuminuric KTRs were used. The complement-activation split products C3c, C3dg, and soluble C5b-9-associated C9 neoantigen were analyzed by ELISA in urine and plasma using neoepitope-specific antibodies. Urinary extracellular vesicles (uEVs) were enriched by lectin and immunoaffinity isolation and analyzed by immunoblot analysis. Urine complement excretion increased significantly in KTRs with an albumin-to-creatinine ratio of ≥300 mg/g compared with <30 mg/g. Urine C3dg and C9 neoantigen excretion correlated significantly to changes in albumin excretion from 3 to 12 mo after transplantation. Fractional excretion of C9 neoantigen was significantly higher than for albumin, indicating postfiltration generation. C9 neoantigen was detected in uEVs in six of the nine albuminuric KTRs but was absent in non-albuminuric controls (n = 8). In C9 neoantigen-positive KTRs, lectin affinity enrichment of uEVs from the proximal tubules yielded signal for iC3b, C3dg, C9 neoantigen, and Na+-glucose transporter 2 but only weakly for aquaporin 2. Coisolation of podocyte markers and Tamm-Horsfall protein was minimal. Our findings show that albuminuria is associated with aberrant filtration and intratubular activation of complement with deposition of C3 activation split products and C5b-9-associated C9 neoantigen on uEVs from the proximal tubular apical membrane. Intratubular complement activation may contribute to progressive kidney injury in proteinuric kidney grafts.NEW & NOTEWORTHY The present study proposes a mechanistic coupling between proteinuria and aberrant filtration of complement precursors, intratubular complement activation, and apical membrane attack in kidney transplant recipients. C3dg and C5b-9-associated C9 neoantigen associate with proximal tubular apical membranes as demonstrated in urine extracellular vesicles. The discovery suggests intratubular complement as a mediator between proteinuria and progressive kidney damage. Inhibitors of soluble and/or luminal complement activation with access to the tubular lumen may be beneficial.


Asunto(s)
Albuminuria/inmunología , Membrana Celular/inmunología , Activación de Complemento , Complemento C3b/orina , Complejo de Ataque a Membrana del Sistema Complemento/orina , Células Epiteliales/inmunología , Vesículas Extracelulares/inmunología , Trasplante de Riñón/efectos adversos , Túbulos Renales Proximales/inmunología , Fragmentos de Péptidos/orina , Adolescente , Adulto , Anciano , Albuminuria/sangre , Albuminuria/orina , Membrana Celular/metabolismo , Estudios Transversales , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Túbulos Renales Proximales/metabolismo , Persona de Mediana Edad , Fragmentos de Péptidos/sangre , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA