Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Nature ; 611(7937): 827-834, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36418452

RESUMEN

Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.


Asunto(s)
Encéfalo , Mamíferos , ATPasas de Translocación de Protón Vacuolares , Animales , Adenosina Trifosfato/metabolismo , Encéfalo/enzimología , Encéfalo/metabolismo , Mamíferos/metabolismo , Protones , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica , Factores de Tiempo , Cinética
2.
Elife ; 72018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29652249

RESUMEN

Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.


Asunto(s)
Adenosina Trifosfato/metabolismo , Vesículas Cubiertas por Clatrina/enzimología , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Hidrólisis , Ratones
3.
Mol Cell Biochem ; 444(1-2): 1-13, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29159770

RESUMEN

The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Conos de Crecimiento/enzimología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/enzimología , Vesículas Secretoras/enzimología , Vesículas Sinápticas/enzimología , Animales , Células PC12 , Ratas
4.
J Biol Chem ; 292(34): 14092-14107, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28637871

RESUMEN

Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, and endogenous THSer(P)-31 was detected in VMAT2- and α-synuclein-immunoprecipitated mouse brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for better understanding dopamine synthesis in physiological and pathological states.


Asunto(s)
Neuronas Dopaminérgicas/enzimología , Aparato de Golgi/enzimología , Microtúbulos/enzimología , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Vesículas Sinápticas/enzimología , Tirosina 3-Monooxigenasa/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Microscopía Fluorescente , Microtúbulos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Sinápticas/metabolismo , Tirosina 3-Monooxigenasa/genética
5.
Ross Fiziol Zh Im I M Sechenova ; 100(4): 385-93, 2014 Apr.
Artículo en Ruso | MEDLINE | ID: mdl-25272450

RESUMEN

Calpains are calcium-activated neutral cysteine proteases, involved in the regulation of a number of physiological functions. Substrates of calpains include receptors, kinases, phosphatases, cytoskeleton and synaptosomal proteins. Some of them undergo complete degradation, though most of the substrates are subjected to limited proteolysis, which results in proteins having new properties. In the following review, we discuss involvement of calpains in the regulation of synapse structure and function. Namely, calpains participate in the regulation of synthesis, release and reuptake of neurotransmitters, modulation of receptors, stabilization or destabilization of the neuronal cytoskeleton. However, uncontrolled hyperactivation of calpains leads to dysregulation of these processes causing neuronal death.


Asunto(s)
Calpaína/metabolismo , Neurotransmisores/metabolismo , Proteolisis , Transmisión Sináptica/fisiología , Vesículas Sinápticas/enzimología , Animales , Humanos
6.
J Cell Biol ; 205(1): 21-31, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24733584

RESUMEN

Most chemical neurotransmission occurs through Ca(2+)-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca(2+) sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca(2+) dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca(2+) for the assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H(+)-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca(2+)-Calmodulin (CaM)-dependent manner. Ca(2+)-CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca(2+)-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca(2+)-CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Unión Neuromuscular/enzimología , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estimulación Eléctrica , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Complejos Multiproteicos , Unión Proteica , Subunidades de Proteína , Proteínas Qa-SNARE/genética , Factores de Tiempo , ATPasas de Translocación de Protón Vacuolares/genética
7.
J Cell Biol ; 203(2): 171-3, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24165933

RESUMEN

The vesicular adenosine triphosphatase (ATPase) acidifies intracellular compartments, including synaptic vesicles and secretory granules. A controversy about a second function of this ATPase in exocytosis has been fuelled by questions about multiple putative roles of acidification in the exocytic process. Now, Poëa-Guyon et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201303104) present new evidence that the vesicular ATPase performs separate acidification and exocytosis roles and propose a mechanism for how these two functions are causally linked.


Asunto(s)
Exocitosis , Neuronas/enzimología , Vesículas Secretoras/enzimología , Transmisión Sináptica , Vesículas Sinápticas/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales
8.
J Cell Biol ; 203(2): 283-98, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24165939

RESUMEN

Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.


Asunto(s)
Exocitosis , Neuronas/enzimología , Vesículas Secretoras/enzimología , Transmisión Sináptica , Vesículas Sinápticas/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Catecolaminas/metabolismo , Bovinos , Células Cromafines/enzimología , Células Cromafines/metabolismo , Exocitosis/efectos de los fármacos , Exocitosis/efectos de la radiación , Concentración de Iones de Hidrógeno , Cinética , Luz , Fusión de Membrana , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de la radiación , Células PC12 , Estructura Terciaria de Proteína , Interferencia de ARN , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/metabolismo , Vesículas Secretoras/efectos de la radiación , Potenciales Sinápticos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de la radiación , Transfección , ATPasas de Translocación de Protón Vacuolares/genética
9.
J Neurosci ; 31(39): 13972-80, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21957258

RESUMEN

Eps15 homology domain-containing proteins (EHDs) are conserved ATPases implicated in membrane remodeling. Recently, EHD1 was found to be enriched at synaptic release sites, suggesting a possible involvement in the trafficking of synaptic vesicles. We have investigated the role of an EHD1/3 ortholog (l-EHD) in the lamprey giant reticulospinal synapse. l-EHD was detected by immunogold at endocytic structures adjacent to release sites. In antibody microinjection experiments, perturbation of l-EHD inhibited synaptic vesicle endocytosis and caused accumulation of clathrin-coated pits with atypical, elongated necks. The necks were covered with helix-like material containing dynamin. To test whether l-EHD directly interferes with dynamin function, we used fluid-supported bilayers as in vitro assay. We found that l-EHD strongly inhibited vesicle budding induced by dynamin in the constant presence of GTP. l-EHD also inhibited dynamin-induced membrane tubulation in the presence of GTPγS, a phenomenon linked with dynamin helix assembly. Our in vivo results demonstrate the involvement of l-EHD in clathrin/dynamin-dependent synaptic vesicle budding. Based on our in vitro observations, we suggest that l-EHD acts to limit the formation of long, unproductive dynamin helices, thereby promoting vesicle budding.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Portadoras/fisiología , Dinaminas/fisiología , Vesículas Sinápticas/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Femenino , Lampreas , Masculino , Estructura Secundaria de Proteína/fisiología , Ratas , Vesículas Sinápticas/enzimología
10.
J Physiol ; 589(Pt 8): 1943-55, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21486806

RESUMEN

Presynaptic long term potentiation of synaptic transmission activates silent synapses and potentiates existing active synapses. We sought to visualise these two processes by studying the cAMP-dependent protein kinase (PKA) potentiation of presynaptic vesicle cycling in cultured cerebellar granule neurons.Using FM dyes to label the pool of recycling synaptic vesicles,we found that trains of electrical stimulation which do not potentiate already active synapses are sufficient to rapidly activate a discrete population comprising silent and very low activity synapses. Silent synapse activation required PKA activity and conversely, active synapses could be silenced by PKA inhibition. Surprisingly, the recycling pool of synaptic vesicles in recently activated synapses was larger than in already active synapses and equivalent to synapses treated with forskolin. Imaging of synaptic vesicle cycling and cytosolic Ca(2+) in individual nerve terminals confirmed that silent synapses have evoked Ca(2+) transients comparable to those of active synapses. Furthermore, across populations of active synapses, changes in Ca(2+) influx did not correlate with changes in the size of the pool of recycling synaptic vesicles. Finally, we found that stimulation of synapsin phosphorylation, but not RIM1α, by PKA was frequency dependent and long lasting. These data are consistent with the idea that PKA regulates synaptic vesicle recycling downstream of Ca(2+) influx and that this pathway is highly active in recently activated synapses.


Asunto(s)
Cerebelo/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuronas/enzimología , Transmisión Sináptica , Análisis de Varianza , Animales , Señalización del Calcio , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Estimulación Eléctrica , Activación Enzimática , Activadores de Enzimas/farmacología , Proteínas de Unión al GTP/metabolismo , Cinética , Aprendizaje , Memoria , Microscopía Fluorescente , Vías Nerviosas/enzimología , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Fosforilación , Terminales Presinápticos/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Sinapsinas/metabolismo , Potenciales Sinápticos , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/enzimología
12.
Neuron ; 68(6): 1097-108, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172612

RESUMEN

Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (∼ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (∼ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.


Asunto(s)
Membrana Celular/enzimología , Citosol/metabolismo , Endocitosis/fisiología , Exocitosis/fisiología , Terminales Presinápticos/enzimología , ATPasas de Translocación de Protón/metabolismo , Vesículas Sinápticas/enzimología , Potenciales de Acción/fisiología , Animales , Citosol/enzimología , Concentración de Iones de Hidrógeno , Ratones , Ratones Transgénicos
13.
J Neurochem ; 114(3): 886-96, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20492353

RESUMEN

How synaptic vesicles (SVs) are localized to the pre-active zone (5-200 nm beneath the active zone) in the nerve terminal, which may represent the slow response SV pool, is not fully understood. Electron microscopy revealed the number of SVs located in the pre-active zone, was significantly decreased in hypothalamic neurons of carboxypeptidase E knockout (CPE-KO) mice compared with wild-type mice. Additionally, we found K(+)-stimulated glutamate secretion from hypothalamic embryonic neurons was impaired in CPE-KO mice. Biochemical studies indicate that SVs from the hypothalamus of wild-type mice and synaptic-like microvesicles from PC12 cells contain a transmembrane form of CPE, with a cytoplasmic tail (CPE(C10)), maybe involved in synaptic function. Yeast two-hybrid and pull-down experiments showed that the CPE cytoplasmic tail interacted with gamma-adducin, which binds actin enriched at the nerve terminal. Total internal reflective fluorescence (TIRF) microscopy using PC12 cells as a model showed that expression of GFP-CPE(C15) reduced the steady-state level of synaptophysin-mRFP containing synaptic-like microvesicles accumulated in the area within 200 nm from the sub-plasma membrane (TIRF zone). Our findings identify the CPE cytoplasmic tail, as a new mediator for the localization of SVs in the actin-rich pre-active zone in hypothalamic neurons and the TIRF zone of PC12 cells.


Asunto(s)
Carboxipeptidasa H/fisiología , Hipotálamo/enzimología , Terminales Presinápticos/enzimología , Vesículas Sinápticas/enzimología , Actinas/metabolismo , Animales , Carboxipeptidasa H/química , Carboxipeptidasa H/genética , Carboxipeptidasa H/ultraestructura , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Citoplasma/ultraestructura , Hipotálamo/ultraestructura , Ratones , Ratones Noqueados , Células PC12 , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Membranas Sinápticas/enzimología , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura , Sinaptosomas
14.
Biochem J ; 427(1): 151-9, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20100168

RESUMEN

Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions. For the SSM-based electrical measurements, the ATPases were activated by ATP concentration jumps. In vesicles, ATP-induced currents were inhibited by the V-ATPase-specific inhibitor BafA1 (bafilomycin A1) and by DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate). In plasma membranes, the currents were inhibited by the Na+/K+-ATPase inhibitor digitoxigenin. The distribution of the V-ATPase- and Na+/K+-ATPase-specific currents correlated with the distribution of vesicles and plasma membranes in the sucrose gradient. V-ATPase-specific currents depended on ATP with a K0.5 of 51+/-7 microM and were inhibited by ADP in a negatively co-operative manner with an IC50 of 1.2+/-0.6 microM. Activation of V-ATPase had stimulating effects on the chloride conductance in the vesicles. Low micromolar concentrations of DIDS fully inhibited the V-ATPase activity, whereas the chloride conductance was only partially affected. In contrast, NPPB [5-nitro-2-(3-phenylpropylamino)-benzoic acid] inhibited the chloride conductance but not the V-ATPase. The results presented describe electrical characteristics of synaptic V-ATPase and Na+/K+-ATPase in their native surroundings, and demonstrate the feasibility of the method for electrophysiological studies of transport proteins in native intracellular compartments and plasma membranes.


Asunto(s)
Encéfalo/enzimología , Membrana Celular/enzimología , Electrofisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Membranas Sinápticas/enzimología , Vesículas Sinápticas/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Macrólidos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores
15.
J Biol Chem ; 285(3): 1957-66, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19903816

RESUMEN

Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT(2)) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT(2) physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT(2), whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT(1) and with overexpressed VMAT(2). GST pull-down assays further identified three cytosolic domains of VMAT(2) involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT(2). Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT(2)-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT(2)/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT(2)-mediated transport into vesicles.


Asunto(s)
Dopamina/biosíntesis , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Descarboxilasas de Aminoácido-L-Aromático/inmunología , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Transporte Biológico , Encéfalo/citología , Encéfalo/enzimología , Citosol/enzimología , Citosol/metabolismo , Humanos , Inmunoprecipitación , Masculino , Células PC12 , Estructura Terciaria de Proteína , Ratas , Vesículas Sinápticas/enzimología , Tirosina 3-Monooxigenasa/inmunología , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
16.
PLoS One ; 4(5): e5697, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19479030

RESUMEN

BACKGROUND: Although ethanol exerts widespread action in the brain, only recently has progress been made in understanding the specific events occurring at the synapse during ethanol exposure. Mice deficient in the calcium-stimulated adenylyl cyclases, AC1 and AC8 (DKO), demonstrate increased sedation duration and impaired phosphorylation by protein kinase A (PKA) following acute ethanol treatment. While not direct targets for ethanol, we hypothesize that these cyclases initiate a homeostatic presynaptic response by PKA to reactivate neurons from ethanol-mediated inhibition. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have used phosphoproteomic techniques and identified several presynaptic proteins that are phosphorylated in the brains of wild type mice (WT) after ethanol exposure, including synapsin, a known PKA target. Phosphorylation of synapsins I and II, as well as phosphorylation of non-PKA targets, such as, eukaryotic elongation factor-2 (eEF-2) and dynamin is significantly impaired in the brains of DKO mice. This deficit is primarily driven by AC1, as AC1-deficient, but not AC8-deficient mice also demonstrate significant reductions in phosphorylation of synapsin and eEF-2 in cortical and hippocampal tissues. DKO mice have a reduced pool of functional recycling vesicles and fewer active terminals as measured by FM1-43 uptake compared to WT controls, which may be a contributing factor to the impaired presynaptic response to ethanol treatment. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that calcium-stimulated AC-dependent PKA activation in the presynaptic terminal, primarily driven by AC1, is a critical event in the reactivation of neurons following ethanol-induced activity blockade.


Asunto(s)
Adenilil Ciclasas/metabolismo , Etanol/farmacología , Homeostasis/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/enzimología , Adenilil Ciclasas/deficiencia , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Electroforesis en Gel Bidimensional , Quinasa del Factor 2 de Elongación/metabolismo , Endocitosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Immunoblotting , Inmunohistoquímica , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Proteómica , Sinapsinas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/enzimología
17.
Proc Natl Acad Sci U S A ; 105(24): 8304-8, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18539771

RESUMEN

TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter. In PC12 cells, as in sympathetic neurons, TRPM7 is located in ACh-secreting SSLVs. TRPM7 knockdown by siRNA, or abolishing channel activity by expression of a dominant negative TRPM7 pore mutant, decreased the frequency of spontaneous and voltage-stimulated SSLV fusion events without affecting large dense core vesicle secretion. We conclude that the conductance of TRPM7 across the vesicle membrane is important in SSLV fusion.


Asunto(s)
Acetilcolina/metabolismo , Membrana Celular/fisiología , Fusión de Membrana , Vesículas Sinápticas/fisiología , Canales Catiónicos TRPM/metabolismo , Animales , Transporte Biológico , Membrana Celular/enzimología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células PC12 , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , ARN Interferente Pequeño/genética , Ratas , Vesículas Sinápticas/enzimología , Canales Catiónicos TRPM/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
18.
J Neurochem ; 103(3): 849-59, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17666040

RESUMEN

The first calpain protease was discovered over 40 years ago now, yet despite the vast amount of literature that has subsequently emerged detailing their involvement in the pathophysiology of a variety of human diseases, it is only in the last decade that calpain-mediated actions along the secretory pathway have begun to emerge. However, the number of secretory pathway substrates identified and their diversity of function continues to grow. This review summarizes our current knowledge of calpain-mediated mechanisms of action that are pertinent to synaptic vesicle assembly and budding, cytoskeletal organization, endosomal recycling, and exocytotic membrane fusion.


Asunto(s)
Calpaína/metabolismo , Sistemas Neurosecretores/enzimología , Animales , Citoesqueleto/enzimología , Citoesqueleto/ultraestructura , Endosomas/enzimología , Endosomas/ultraestructura , Exocitosis/fisiología , Humanos , Vesículas Secretoras/enzimología , Vesículas Secretoras/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/enzimología , Vesículas Sinápticas/ultraestructura
19.
J Biol Chem ; 282(21): 15754-67, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17400547

RESUMEN

Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin.


Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Sinapsinas/metabolismo , Vesículas Sinápticas/enzimología , Sinaptosomas/enzimología , Familia-src Quinasas/metabolismo , Animales , Ratones , Ratones Noqueados , Fosforilación , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Sinapsinas/deficiencia , Dominios Homologos src/genética
20.
Cell Mol Neurobiol ; 26(4-6): 679-93, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16710756

RESUMEN

1. Selective protein-protein interactions between neurotransmitter transporters and their synaptic targets play important roles in regulating chemical neurotransmission. We screened a yeast two-hybrid library with bait containing the C-terminal amino acids of VGLUT1 and obtained clones that encode endophilin 1 and endophilin 3, proteins considered to play an integral role in glutamatergic vesicle formation. 2. Using a modified yeast plasmid vector to enable more cost-effective screens, we analyzed the selectivity and specificity of this interaction. Endophilins 1 and 3 selectively recognize only VGLUT1 as the C-terminus of VGLUT2 and VGLUT3 do not interact with either endophilin isoform. We mutagenized four conserved stretches of primary sequence in VGLUT1 that includes two polyproline motifs (Pro1, PPAPPP, and Pro2, PPRPPPP), found only in VGLUT1, and two conserved stretches (SEEK, SYGAT), found also in VGLUT2 and VGLUT3. The absence of the VGLUT conserved regions does not affect VGLUT1-endophilin association. Of the two polyproline stretches, only one (Pro2) is required for binding specificity to both endophilin 1 and endophilin 3. 3. We also show that endophilin 1 and endophilin 3 co-localize with VGLUT1 in synaptic terminals of differentiated rat neocortical neurons in primary culture. These results indicate that VGLUT1 and both endophilins are enriched in a class of excitatory synaptic terminals in cortical neurons and there, may interact to play an important role affecting the vesicular sequestration and synaptic release of glutamate.


Asunto(s)
Aciltransferasas/metabolismo , Neocórtex/enzimología , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/enzimología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Ácido Glutámico/metabolismo , Modelos Biológicos , Neocórtex/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/metabolismo , Distribución Tisular , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA