Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
BMC Plant Biol ; 24(1): 607, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926889

RESUMEN

BACKGROUND: Salinity is a major abiotic stress, and the use of saline water in the agricultural sector will incur greater demand under the current and future climate changing scenarios. The objective of this study was to develop a dual-functional nanofertilizer capable of releasing a micronutrient that nourishes plant growth while enhancing salt stress resilience in faba bean (Vicia faba L.). RESULTS: Moringa oleifera leaf extract was used to synthesize sulfur nanoparticles (SNPs), which were applied as a foliar spray at different concentrations (0, 25, 50, and 100 mg/l) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. The SNPs were characterized and found to be spherical in shape with an average size of 10.98 ± 2.91 nm. The results showed that salt stress had detrimental effects on the growth and photosynthetic performance (Fv/Fm) of faba bean compared with control, while foliar spraying with SNPs improved these parameters under salinity stress. SNPs application also increased the levels of osmolytes (soluble sugars, amino acids, proline, and glycine betaine) and nonenzymatic antioxidants, while reducing the levels of oxidative stress biomarkers (MDA and H2O2). Moreover, SNPs treatment under salinity stress stimulated the activity of antioxidant enzymes (ascorbate peroxidase (APX), and peroxidase (POD), polyphenol oxidase (PPO)) and upregulated the expression of stress-responsive genes: chlorophyll a-b binding protein of LHCII type 1-like (Lhcb1), ribulose bisphosphate carboxylase large chain-like (RbcL), cell wall invertase I (CWINV1), ornithine aminotransferase (OAT), and ethylene-responsive transcription factor 1 (ERF1), with the greatest upregulation observed at 50 mg/l SNPs. CONCLUSION: Overall, foliar application of sulfur nanofertilizers in agriculture could improve productivity while minimizing the deleterious effects of salt stress on plants. Therefore, this study provides a strong foundation for future research focused on evaluating the replacement of conventional sulfur-containing fertilizers with their nanoforms to reduce the harmful effects of salinity stress and enhance the productivity of faba beans.


Asunto(s)
Fertilizantes , Nanopartículas , Estrés Salino , Azufre , Vicia faba , Vicia faba/fisiología , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/genética , Azufre/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
2.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822863

RESUMEN

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Asunto(s)
Cadmio , Microplásticos , Plantones , Superóxido Dismutasa , Vicia faba , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cadmio/toxicidad , Microplásticos/toxicidad , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Contaminantes Químicos del Agua/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
3.
Curr Microbiol ; 81(8): 220, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867024

RESUMEN

The bean yellow mosaic virus (BYMV) is one of the most serious economic diseases affecting faba bean crop production. Rhizobium spp., well known for its high nitrogen fixation capacity in legumes, has received little study as a possible biocontrol agent and antiviral. Under greenhouse conditions, foliar application of molecularly characterized Rhizobium leguminosarum bv. viciae strain 33504-Borg201 to the faba bean leaves 24 h before they were infected with BYMV made them much more resistant to the disease while also lowering its severity and accumulation. Furthermore, the treatment promoted plant growth and health, as evidenced by the increased total chlorophyll (32.75 mg/g f.wt.) and protein content (14.39 mg/g f.wt.), as well as the improved fresh and dry weights of the plants. The protective effects of 33504-Borg201 greatly lowered the levels of hydrogen peroxide (H2O2) (4.92 µmol/g f.wt.) and malondialdehyde (MDA) (173.72 µmol/g f.wt.). The antioxidant enzymes peroxidase (1.58 µM/g f.wt.) and polyphenol oxidase (0.57 µM/g f.wt.) inhibited the development of BYMV in plants treated with 33504-Borg201. Gene expression analysis showed that faba bean plants treated with 33504-Borg201 had higher amounts of pathogenesis-related protein-1 (PR-1) (3.28-fold) and hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (4.13-fold) than control plants. These findings demonstrate the potential of 33,504-Borg201 as a cost-effective and eco-friendly method to protect faba bean plants against BYMV. Implementing this approach could help develop a simple and sustainable strategy for protecting faba bean crops from the devastating effects of BYMV.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Rhizobium leguminosarum , Vicia faba , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/fisiología , Vicia faba/virología , Vicia faba/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Resistencia a la Enfermedad , Peróxido de Hidrógeno/metabolismo
4.
Physiol Plant ; 176(3): e14404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922894

RESUMEN

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Asunto(s)
Aluminio , Genotipo , Fenotipo , Vicia faba , Vicia faba/genética , Vicia faba/efectos de los fármacos , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo , Aluminio/toxicidad , Suelo/química , Concentración de Iones de Hidrógeno , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Prolina/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de los fármacos , Ácidos/metabolismo
5.
Food Res Int ; 183: 114231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760148

RESUMEN

This research assessed how three preprocessing techniques [soaking (S), soaking and reconstitution (SR), and soaking and dehulling (SD)] impact the protein digestibility and bioactivity of faba bean flours when combined with thermoplastic extrusion. Samples were compared against a control (C) of extruded faba bean flour without preprocessing. Applying preprocessing techniques followed by extrusion diminished antinutrient levels while enhancing protein hydrolysis and in vitro bioactivity in higher extent compared to C. Specifically, SD combined with extrusion was the most effective, achieving an 80% rate of protein hydrolysis and uniquely promoting the release of gastric digestion-resistant proteins (50-70 kDa). It also resulted in the highest release of small peptides (<3kDa, 22.51%) and free amino acids (15.50%) during intestinal digestion. Moreover, while all preprocessing techniques increased antioxidant (ABTS radical-scavenging), antidiabetic, and anti-hypertensive activities, SD extruded flour displayed the highest levels of dipeptidyl peptidase inhibition (DPP-IVi, IC50=13.20 µg/mL), pancreatic α-amylase inhibition (IC50=8.59 mg/mL), and angiotensin I-converting enzyme inhibition (ACEi, IC50=1.71 mg protein/mL). As a result, it was selected for further peptide and in silico bioactive analysis. A total of 24 bioactive peptides were identified in intestinal digests from SD extruded flour, all with potential DPP-IVi and ACEi activities, and six were also predicted as antioxidant peptides. VIPAGYPVAIK and GLTETWNPNHPEL were highlighted as resistant bioactive peptides with the highest antidiabetic and antioxidant potential. Our findings demonstrated that combining preprocessing (particularly SD) and thermoplastic extrusion enhances protein digestibility in faba beans and promotes the release of beneficial bioactive peptides in the intestine.


Asunto(s)
Digestión , Harina , Manipulación de Alimentos , Péptidos , Vicia faba , Vicia faba/química , Harina/análisis , Manipulación de Alimentos/métodos , Antioxidantes/análisis , Valor Nutritivo , Hidrólisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Proteínas de Plantas/metabolismo
6.
Plant Physiol Biochem ; 211: 108723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749376

RESUMEN

Legume-rhizobia symbiosis requires high phosphorus (P) in the form of ATP to convert atmospheric nitrogen (N) into ammonia. The fixed ammonia is converted to NH4+ by H+-ATPase via protonation. To the best of our knowledge, most of these research works resort to using only inorganic P (Pi) to the neglect of the organic P (Po) counterpart. As it stands, the potential regulating roles of plasma membrane (PM) H+-ATPases during legume-rhizobia symbiosis in response to phytic acid supply and how it alters and modulates the regulation of PM H+-ATPases remain obscure. To contribute to the above hypothesis, we investigate the mechanisms that coordinately facilitate the growth, uptake, and transcript expression of PM H+-ATPase gene isoforms in response to different P sources when hydroponically grown Vicia faba plants were exposed to three P treatments, viz., low- and high-Pi (2.0 and 200 µM KH2PO4; LPi and HPi), and phytic acid (200 µM; Po) and inoculated with Rhizobium leguminosarum bv. viciae 384 for 30 days. The results consistently reveal that the supply of Po improved not only the growth and biomass, but also enhanced photosynthetic parameters, P uptake and phosphatase activities in symbiotically grown Vicia faba relative to Pi. The supply of Po induced higher transcriptional expression of all PM H+-ATPase gene isoforms, with possible interactions between phosphatases and H+-ATPase genes in Vicia faba plants when exclusively reliant on N derived from nodule symbiosis. Overall, preliminary results suggest that Po could be used as an alternative nutrition in symbiotic crops to improve plant growth.


Asunto(s)
Ácido Fítico , Simbiosis , Vicia faba , Ácido Fítico/metabolismo , Vicia faba/metabolismo , Vicia faba/genética , Regulación de la Expresión Génica de las Plantas , Rhizobium leguminosarum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Fósforo/metabolismo
7.
PLoS One ; 19(5): e0304673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820398

RESUMEN

In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.


Asunto(s)
Peróxido de Hidrógeno , Orobanche , Vicia faba , Vicia faba/microbiología , Vicia faba/parasitología , Vicia faba/metabolismo , Peróxido de Hidrógeno/metabolismo , Catecol Oxidasa/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Rhizobium/fisiología , Peroxidasa/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Fenilanina Amoníaco-Liasa/metabolismo
8.
Trop Anim Health Prod ; 56(3): 122, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607593

RESUMEN

The present study aimed to use poor quality roughages, such as rice and faba bean straw, treated with or without urea, and their impacts on digestibility, rumen fermentation, some blood parameters, and growth performance of lambs. Twenty crossbred male lambs (1/4 Finland ×¾ Ossimi, 25±1.13kg live body weight) were chosen and divided into four groups. All lambs were fed rations of concentrated feed mixture at 2% of live weight with the following roughages ad libitum: URS (control group, untreated rice straw), TRS (urea-treated rice straw), FBS (faba bean straw), and TRS+FBS (mixture of TRS and FBS, 1:1). Nutrient digestibility and feeding values improved (P<0.05) with TRS+FBS lambs versus FBS, TRS and URS lambs. The highest numerical values of ruminal total volatile fatty acid (VFA) concentration in TRS lambs were recorded 23.9 ml.eq/dl followed by TRS+FBS, URS and FBS. Regarding to the ruminal parameters, there were no differences (P>0.05) among evaluated groups except for NH3-N, the highest concentration (P<0.05) was recorded in TRS lambs at 3 h post-feeding. Lambs of TRS, FBS and TRS+FBS showed faster growth (P<0.05) than those of the control (i.e., URS). Intakes of dry matter, total digestible nutrients, and digestible crude protein were numerically increased for TRS, FBS, and TRS+FBS. Feed conversion, as kg dry matter/kg gain, was improved for TRS, FBS, and TRS+FBS lambs versus URS. Daily gain of lambs increased (P<0.05) with lambs of TRS, FBS, and TRS+FBS but URS lambs showed a decrease (P<0.05) in daily gain. Feed conversion as kg dry matter intake/kg gain was improved (P<0.05) by feeding on TRS, FBS and TRS+FBS rations versus URS. The TRS+FBS lambs tended to have the highest economic efficiency versus URS, TRS and FBS lambs. It was concluded that urea-treated rice straw could be used as sole roughage or mixed with faba bean straw (1:1) in growing lambs' ration to improve their performance and economic efficiency without adversely affecting their health.The present study aimed to use poor quality roughages, such as rice and faba bean straw, treated with or without urea, and their impacts on digestibility, rumen fermentation, some blood parameters, and growth performance of lambs. Twenty crossbred male lambs (1/4 Finland ×¾ Ossimi, 25±1.13kg live body weight) were chosen and divided into four groups. All lambs were fed rations of concentrated feed mixture at 2% of live weight with the following roughages ad libitum: URS (control group, untreated rice straw), TRS (urea-treated rice straw), FBS (faba bean straw), and TRS+FBS (mixture of TRS and FBS, 1:1). Nutrient digestibility and feeding values improved (P<0.05) with TRS+FBS lambs versus FBS, TRS and URS lambs. The highest numerical values of ruminal total volatile fatty acid (VFA) concentration in TRS lambs were recorded 23.9 ml.eq/dl followed by TRS+FBS, URS and FBS. Regarding to the ruminal parameters, there were no differences (P>0.05) among evaluated groups except for NH3-N, the highest concentration (P<0.05) was recorded in TRS lambs at 3 h post-feeding. Lambs of TRS, FBS and TRS+FBS showed faster growth (P<0.05) than those of the control (i.e., URS). Intakes of dry matter, total digestible nutrients, and digestible crude protein were numerically increased for TRS, FBS, and TRS+FBS. Feed conversion, as kg dry matter/kg gain, was improved for TRS, FBS, and TRS+FBS lambs versus URS. Daily gain of lambs increased (P<0.05) with lambs of TRS, FBS, and TRS+FBS but URS lambs showed a decrease (P<0.05) in daily gain. Feed conversion as kg dry matter intake/kg gain was improved (P<0.05) by feeding on TRS, FBS and TRS+FBS rations versus URS. The TRS+FBS lambs tended to have the highest economic efficiency versus URS, TRS and FBS lambs. It was concluded that urea-treated rice straw could be used as sole roughage or mixed with faba bean straw (1:1) in growing lambs' ration to improve their performance and economic efficiency without adversely affecting their health.


Asunto(s)
Oryza , Vicia faba , Masculino , Ovinos , Animales , Oveja Doméstica , Nutrientes , Fibras de la Dieta , Urea , Ácidos Grasos Volátiles , Peso Corporal
9.
J Agric Food Chem ; 72(12): 6432-6443, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470110

RESUMEN

Faba bean flour, after in vitro gastrointestinal digestion, showed important antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities. In the present study, 11 faba bean- derived peptides were synthesized to confirm their bioactivities and provide a deeper understanding of their mechanisms of action. The results revealed that 7 peptides were potent antioxidants, namely, NYDEGSEPR, TETWNPNHPEL, TETWNPNHPE, VIPTEPPH, VIPTEPPHA, VVIPTEPPHA, and VVIPTEPPH. Among them, TETWNPNHPEL had the highest activity in the ABTS (EC50 = 0.5 ± 0.2 mM) and DPPH (EC50 = 2.1 ± 0.1 mM) assays (p < 0.05), whereas TETWNPNHPE had the highest activity (p < 0.05) in the ORAC assay (2.84 ± 0.08 mM Trolox equivalent/mM). Synergistic and/or additive effects were found when selected peptides (TETWNPNHPEL, NYDEGSEPR, and VVIPTEPPHA) were combined. Four peptides were potent ACE inhibitors, where VVIPTEPPH (IC50 = 43 ± 1 µM) and VVIPTEPPHA (IC50 = 50 ± 5 µM) had the highest activity (p < 0.05), followed by VIPTEPPH (IC50 = 90 ± 10 µM) and then VIPTEPPHA (IC50 = 123 ± 5 µM) (p < 0.05). These peptides were noncompetitive inhibitors, as supported by kinetic studies and a molecular docking investigation. This study demonstrated that peptides derived from faba beans have multifunctional bioactivities, making them a promising food-functional and nutraceutical ingredient.


Asunto(s)
Antioxidantes , Vicia faba , Antioxidantes/química , Vicia faba/metabolismo , Simulación del Acoplamiento Molecular , Cinética , Péptidos/química , Digestión , Angiotensinas , Peptidil-Dipeptidasa A/química
10.
Fish Physiol Biochem ; 50(3): 1157-1169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38418771

RESUMEN

Faba bean has gained attention as a cost-effective protein source with the potential to enhance product quality (texture properties, collagen content, etc.) in fish. However, its anti-nutrition factor, high feed conversion ratio, poor growth performance, etc. limit the widely application as a dietary source, especially in carnivorous fish. The water or alcohol extract of faba bean might resolve the problem. In this study, the juvenile Nibea coibor, known for their high-protein, large-sized, and high-grade swim bladder, were fed with seven isoproteic and isolipid experimental diets with the additive of faba bean water extract (1.25%, 2.5%, and 5%) or faba bean alcohol extract (0.9%, 1.8%, and 3.6%), with a control group without faba bean extract. After the 10-week feeding trail, the growth, antioxidant capacity, textural properties, and collagen deposition of the swim bladder were analyzed. Results showed that the 1.25% faba bean water extract group could significantly promote growth, textural quality of the swim bladder, and have beneficial effects on antioxidant response of fish. Conversely, dietary supplementation of faba bean alcohol extract resulted in reduced growth performance in a dose-dependent manner. Furthermore, fish fed diet with 1.25% faba bean water extract exhibited increased collagen content and upregulated collagen-related gene expression in the swim bladder, which was consistent with the Masson stain analysis for collagen fiber. Our results suggested that the anti-nutrient factor and bioactive component of faba bean may mainly be enriched in alcohol extract and water extract of faba bean, respectively. Besides, the appropriate addition of water extract of faba bean may improve the texture quality of the swim bladder by promoting collagen deposition. This study would provide a theoretical basis for the formulated diets with faba bean extract to promote product quality of marine fish.


Asunto(s)
Sacos Aéreos , Antioxidantes , Colágeno , Dieta , Extractos Vegetales , Vicia faba , Vicia faba/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Colágeno/metabolismo , Antioxidantes/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos
11.
Plant Physiol Biochem ; 207: 108361, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237423

RESUMEN

Like other heavy metals, Cr (VI) is a powerful carcinogen and mutagen agent. Its toxic effects on plants are well considered. In order to elucidate its adverse effects, the present work aims to study the mitosis aberrations of Cr (VI) on the Vicia faba root-cells and its molecular docking analysis to understand the genotoxicity mechanisms. In-vivo, Vicia faba plants were exposed to 50 and 100 µM Cr (VI) for 48 h. In-silico, molecular docking and molecular dynamics simulation were used to study the interactions between dichromate and tubulin tyrosine ligase T2R-TTL (PDBID: 5XIW) with reference to Colchicine (microtubule inhibitor). According to our results, Cr (VI) affects growth and cell division and also induces many mitosis aberrations such as chromosome sticking, anaphase/telophase bridges, lagging chromosomes and fragmentation during all phases of mitosis. On the one hand, Cr (VI) reduces mitotic index and promotes micronuclei induction. The in-silico results showed that dichromate establishes very strong bonds at the binding site of the tubulin tyrosine ligase T2R-TTL, with a binding affinity of -5.17 Kcal/Mol and an inhibition constant of 163.59 µM. These interactions are similar to those of colchicine with this protein, so dichromate could be a very potent inhibitor of this protein's activity. TTL plays a fundamental role in the tyrosination/detyrosination of tubulin, which is crucial to the regulation of the microtubule cytoskeleton. Its inhibition leads to the appearance of many morphogenic abnormalities such as mitosis aberrations. In conclusion, our data confirm the highest genotoxicity effects of Cr (VI) on Vicia faba root-cells.


Asunto(s)
Fabaceae , Vicia faba , Vicia faba/genética , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/genética , Tubulina (Proteína)/farmacología , Cromo/toxicidad , Mitosis , Daño del ADN , Colchicina/farmacología , Tirosina , Ligasas , Aberraciones Cromosómicas
12.
Plant Physiol Biochem ; 206: 108243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048701

RESUMEN

Thaumatin-like proteins (TLPs) are a diverse family of pathogenesis-related proteins (PR-5) found in various plant species. Faba bean is an economically important crop known for its nutritional value and resilience to harsh environmental conditions, including drought. In this study, we conducted a comprehensive analysis of the gene structure, phylogenetics, and expression patterns of TLP genes in faba bean, with a specific focus on their response to drought stress. A total of 10 TLP genes were identified and characterized from the faba bean transcriptome, which could be classified into four distinct groups based on their evolutionary relationships. Conserved cysteine residues and REDDD motifs, which are characteristic features of TLPs, were found in most of the identified VfTLP members, and these proteins were likely to reside in the cytoplasm. Two genes, VfTLP4-3 and VfTLP5, exhibited significant upregulation under drought conditions. Additionally, ectopically expressing VfTLP4-3 and VfTLP5 in tobacco leaves resulted in enhanced drought tolerance and increased peroxidase (POD) activity. Moreover, the protein VfTLP4-3 was hypothesized to interact with glycoside hydrolase family 18 (GH18), endochitinase, dehydrin, Barwin, and aldolase, all of which are implicated in chitin metabolism. Conversely, VfTLP5 was anticipated to associate with peptidyl-prolyl cis-trans isomerase-like 3, a molecule linked to the synthesis of proline. These findings suggest that these genes may play crucial roles in mediating the drought response in faba bean through the regulation of these metabolic pathways, and serve as a foundation for future genetic improvement strategies targeting enhanced drought resilience in this economically important crop.


Asunto(s)
Plantones , Vicia faba , Plantones/genética , Vicia faba/genética , Vicia faba/metabolismo , Sequías , Plantas/genética , Transcriptoma
14.
BMC Plant Biol ; 23(1): 403, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620786

RESUMEN

BACKGROUND: The spreading of root rot disease of faba bean plant (Vichia faba L, VF) in Egypt is still of great challenge faced researchers since VF is an important legume in Egypt, because their seeds are used for human feeding. Fungicides are used for treatment of either seeds or soil; unfortunately they cause environmental pollution. Therefore, there is a need to continue research to find out safe natural solutions. In this regard, Arbuscular mycorrhizal fungi (AMF) and chitosan (micro or nanoform) were used as an inhibitory product against Rhizoctonia solani OM918223 (R.solani) either singly or in combinations. RESULTS: The results employed herein have exhibited that R.solani caused root rot disease of VF plants in more than 80% of the plants under investigation. Chitosan nanoparticles (Chitosan NPs) were prepared by ionic gelatin method and characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM) imaging and Fourier transform infra-red (FTIR). Chitosan NPs are spherical with a diameter of 78.5 nm and exhibited the presence of different functional groups. The inhibitory natural products against R.solani were arranged according to their ability to inhibit the pathogen used in the following descending manner; combination of AMF with Chitosan NPs, AMF with micro chitosan and single AMF, respectively. Where, Chitosan NPs showed a potent influence on R.solani pathogen and reduced the pre-and post-emergence of R. solani. In addition, Chitosan NPs reduced Disease Incidence (DI %) and Disease Severity (DS %) of root rot disease and are widely functional through mixing with AMF by about 88% and 89%. Further, Chitosan NPs and micro chitosan were proved to increase the growth parameters of VF plants such as nutritional status (mineral, soluble sugar, and pigment content), and defense mechanisms including total phenol, peroxidase, and polyphenol oxidase in mycorrhizal plants more than non-mycorrhizal one either in infected or healthy plants. Moreover, activity of AMF as an inhibitory against R.solani and improvement natural agent for VF growth parameters was enhanced through its fusing with Chitosan NPs. CONCLUSIONS: The use of AMF and Chitosan NPs increased faba bean plant resistance against the infection of root rot R. solani, with both prevention and cure together. Therefore, this research opens the door to choose natural and environmental friendly treatments with different mechanisms of plant resistance to disease.


Asunto(s)
Quitosano , Micorrizas , Vicia faba , Humanos , Rhizoctonia
15.
Molecules ; 28(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37513301

RESUMEN

The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.


Asunto(s)
Vicia faba , Vicia faba/química , Culinaria , Semillas/química , Fermentación
16.
Food Funct ; 14(16): 7361-7374, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37489569

RESUMEN

Plant proteins have low protein nutritional quality due to their unbalanced indispensable amino acid (IAA) profile and the presence of antinutritional factors (ANFs) that limit protein digestibility. The blending of pulses with cereals/pseudocereals can ensure a complete protein source of IAA. In addition, extrusion may be an effective way to reduce ANFs and improve protein digestibility. Thereby, we aimed to improve the protein nutritional quality of plant protein ingredients by blending different protein sources and applying extrusion processing. Protein blends were prepared with pea, faba bean, quinoa, hemp, and/or oat concentrates or flours, and extrudates were prepared either rich in pulses (texturized vegetable proteins, TVPs) or rich in cereals (referred to here as Snacks). After extrusion, all samples showed a reduction in trypsin inhibitor activity (TIA) greater than 71%. Extrusion caused an increase in the total in vitro protein digestibility (IVPD) of TVPs, whereas no significant effect was shown for the snacks. According to the molecular weight distribution, TVPs presented protein aggregation. The results suggest that the positive effect of decreased TIA on IVPD is partially counteracted by the formation of aggregates during extrusion which restricts enzyme accessibility. After extrusion, all snacks retained a balanced amino acid score whereas a small loss of methionine + cysteine was observed in the TVPs, resulting in a small reduction in IAA content. Thus, extrusion has the potential to improve the nutritional quality of TVPs by reducing TIA and increasing protein digestibility.


Asunto(s)
Proteínas de Plantas , Vicia faba , Aminoácidos/metabolismo , Valor Nutritivo , Vicia faba/metabolismo , Harina
17.
J Nutr ; 153(6): 1718-1729, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277162

RESUMEN

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Asunto(s)
Vicia faba , Masculino , Humanos , Animales , Ratones , Vicia faba/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas de la Leche/farmacología , Proteínas de la Leche/metabolismo , Inteligencia Artificial , Fuerza Muscular , Inmovilización/métodos , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Suplementos Dietéticos , Péptidos/metabolismo , Músculo Esquelético/metabolismo
18.
Genes (Basel) ; 14(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37239389

RESUMEN

Faba bean is an important legume crop consumed as a vegetable or snack food, and its green cotyledons could present an attractive color for consumers. A mutation in SGR causes stay-green in plants. In this study, vfsgr was identified from a green-cotyledon-mutant faba bean, SNB7, by homologous blast between the SGR of pea and the transcriptome of faba bean. Sequence analysis revealed that a SNP at position 513 of the CDS of VfSGR caused a pre-stop codon, resulting in a shorter protein in the green-cotyledon faba bean SNB7. A dCaps marker was developed according to the SNP that caused the pre-stop, and this marker was completely associated with the color of the cotyledon of faba bean. SNB7 stayed green during dark treatment, while the expression level of VfSGR increased during dark-induced senescence in the yellow-cotyledon faba bean HST. Transient expression of VfSGR in Nicotiana. benthamiana leaves resulted in chlorophyll degradation. These results indicate that vfsgr is the gene responsible for the stay-green of faba bean, and the dCaps marker developed in this study provides a molecular tool for the breeding of green-cotyledon faba beans.


Asunto(s)
Fabaceae , Vicia faba , Vicia faba/genética , Pisum sativum/genética , Fitomejoramiento , Fabaceae/genética , Transcriptoma
19.
Food Funct ; 14(11): 5429-5441, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37222454

RESUMEN

Iron-fortified broad bean flours were obtained by vacuum impregnation during soaking. The impact of vacuum impregnation and iron fortification on the hydration kinetics of broad beans, as well as the processing (soaking, autoclaving, and dehulling) on the iron-absorption inhibitors (phytic acid and tannins), iron content, iron bioaccessibility, and physicochemical and techno-functional properties of flours was investigated. Results showed that the use of vacuum impregnation during soaking reduced the broad beans' soaking time by 77%, and using iron solution instead of water did not affect the hydration kinetics. After soaking, iron-fortified broad bean flours increased twice (without hull) or more (with hull) the iron and bioaccessible iron content regarding non-fortified flours. Cooking broad beans by autoclaving modified the tannin content, the iron content and its bioaccessible fraction, and the physicochemical and techno-functional properties of the flours. Autoclaving increased the water holding capacity and absorption rate, swelling capacity, bulk density, and particle size, while decreased the solubility index, whiteness index, emulsifying capacity, emulsion stability, and gelling capacity. Finally, dehulling did not practically affect the physicochemical and techno-functional properties of flours, but showed a decrease in iron content, although increased iron bioaccessibility was observed, occurred mainly due to the reduction in tannin concentrations. The results obtained in this study demonstrated that vacuum impregnation is a useful technology for obtaining iron-fortified broad bean flours with different physicochemical and techno-functional properties depending on the production process used.


Asunto(s)
Fabaceae , Vicia faba , Vicia faba/química , Harina/análisis , Hierro , Vacio , Manipulación de Alimentos/métodos , Fabaceae/química , Taninos , Agua
20.
Metabolomics ; 19(6): 52, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249718

RESUMEN

INTRODUCTION: Faba bean (Vicia faba L.) flowers are edible and used as garnishes because of their aroma, sweet flavor and attractive colors. Anthocyanins are the common plant pigments that give flowers their vivid colors, whereas non-anthocyanin flavonoids can serve as co-pigments that can modify the color intensity of flowers. OBJECTIVES: To explore the polyphenol diversity and differences in standard and wing petals of faba bean flowers; and identify glycosylated flavonoids that contribute to flower color. METHODS: Flower standard and wing petals from 30 faba bean genotypes (eight color groups with a total of 60 samples) were used for polyphenol extraction. Samples were analyzed using a targeted method and a semi-untargeted analysis using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with photodiode array (PDA) detection. Compound Discoverer software was used for polyphenol identification and multivariate analysis. RESULTS: The semi-untargeted analysis guided by the PDA detected 90 flavonoid metabolites present in faba bean flower petals. Ten anthocyanins largely influenced the flower colors, but other flavonoids (63 flavonols and 12 flavones) found with variable levels in different flower color groups appeared to also influence color, especially in mixed colors. CONCLUSION: Analysis of the different colored faba bean flowers confirmed that the color variation between the flowers was mainly controlled by anthocyanins in brown, red and purple-red flowers. Of the other flavonoids, multiglycosylated kaempferols were abundant in white and brown flowers, monoglycosylated kaempferols were common in red and purple-red flowers, and quercetin and apigenin glycosides were abundant co-pigments in purple-red flowers.


Asunto(s)
Flavonoides , Vicia faba , Flavonoides/análisis , Antocianinas/análisis , Antocianinas/química , Antocianinas/metabolismo , Vicia faba/metabolismo , Quempferoles/análisis , Quempferoles/metabolismo , Metabolómica , Flores/metabolismo , Polifenoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA