Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.807
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Biol ; 22(1): 139, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915055

RESUMEN

BACKGROUND: The intermediate filament protein vimentin is widely recognized as a molecular marker of epithelial-to-mesenchymal transition. Although vimentin expression is strongly associated with cancer metastatic potential, the exact role of vimentin in cancer metastasis and the underlying mechanism of its pro-metastatic functions remain unclear. RESULTS: This study revealed that vimentin can enhance integrin ß1 surface expression and induce integrin-dependent clustering of cells, shielding them against anoikis cell death. The increased integrin ß1 surface expression in suspended cells was caused by vimentin-mediated protection of the internal integrin ß1 pool against lysosomal degradation. Additionally, cell detachment was found to induce vimentin Ser38 phosphorylation, allowing the translocation of internal integrin ß1 to the plasma membrane. Furthermore, the use of an inhibitor of p21-activated kinase PAK1, one of the kinases responsible for vimentin Ser38 phosphorylation, significantly reduced cancer metastasis in animal models. CONCLUSIONS: These findings suggest that vimentin can act as an integrin buffer, storing internalized integrin ß1 and releasing it when needed. Overall, this study provides insights regarding the strong correlation between vimentin expression and cancer metastasis and a basis for blocking metastasis using this novel therapeutic mechanism.


Asunto(s)
Anoicis , Integrina beta1 , Vimentina , Vimentina/metabolismo , Vimentina/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Animales , Supervivencia Celular , Ratones , Línea Celular Tumoral , Fosforilación , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética
2.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831508

RESUMEN

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Asunto(s)
Filamentos Intermedios , Vimentina , Vimentina/metabolismo , Vimentina/química , Humanos , Filamentos Intermedios/metabolismo , Animales , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/química
3.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38822516

RESUMEN

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Asunto(s)
Cadherinas , Toxina Diftérica , Transición Epitelial-Mesenquimal , Regiones Promotoras Genéticas , Humanos , Células A549 , Antígenos CD/genética , Antígenos CD/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos , Toxina Diftérica/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Genes Transgénicos Suicidas , Regiones Promotoras Genéticas/genética , Vimentina/genética , Vimentina/metabolismo
4.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 592-597, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825905

RESUMEN

Objective: To investigate the expression of DARS2 and its clinical significance in colorectal cancer. Methods: In this study, bioinformatics tools, especially gene expression profile interactive analysis 2 (GEPIA2), were used to conduct an in-depth analysis of DARS2 expression in colorectal cancer tissues. Immunohistochemical staining was carried out in 108 colorectal cancer specimens and 30 normal colorectal tissues obtained from the First Affiliated Hospital of Nanchang University, Nanchang, China. Colorectal cancer cell lines (HCT116 and SW480) were transfected with small interfering RNA (siRNA) and DARS2 overexpression plasmid to examine the effects of DARS2 knockdown and overexpression on cell function. To assess the effects on cell function, CCK8 and transwell migration assays were used to assess proliferation and cell motility, respectively. Additionally, protein immunoblotting was employed to scrutinize the expression of proteins associated with the epithelial-mesenchymal transition of colorectal cancer cells. Results: DARS2 exhibited a pronounced upregulation in expression within colorectal cancer tissues compared to their normal epithelial counterparts. Furthermore, DARS2 expression was higher in colorectal cancer of stage Ⅲ-Ⅳ than those of stage Ⅰ-Ⅱ, exhibiting a significant correlation with N staging, M staging, and pathological staging (P<0.05). Kaplan-Meier analyses showed a decreased overall survival rate in colorectal cancer with DARS2 expression compared to those without DARS2 expression (P<0.05). In the siRNA transfection group, there was a significant reduction in cell proliferation and migration (P<0.01 and P<0.05, respectively). Conversely, the transfection of DARS2 overexpression plasmids substantially increased both cell proliferation and migration (P<0.05). Additionally, immunoblotting revealed that DARS2 knockdown led to an upregulation of E-cadherin expression and a downregulation of N-cadherin and vimentin expression. In contrast, DARS2 overexpression resulted in increased N-cadherin and vimentin expression, coupled with reduction in E-cadherin expression. Conclusions: There is a strong association between DARS2 expression and colorectal cancer progression. Silencing DARS2 inhibits cell proliferation and migration, exerting a discernible influence on the epithelial-mesenchymal transition process.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , ARN Interferente Pequeño , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Vimentina/metabolismo , Vimentina/genética , Cadherinas/metabolismo , Cadherinas/genética , Tasa de Supervivencia , Células HCT116 , Estadificación de Neoplasias , Regulación hacia Arriba , Regulación Neoplásica de la Expresión Génica , Relevancia Clínica
5.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928294

RESUMEN

It is known that V-set and immunoglobulin domain containing 1 (VSIG1) is a cell-cell adhesion molecule that can serve as an indicator of better survival in patients with gastric cancer. Its interaction with cytoplasmic thyroid transcription factor 1 (TTF-1) has been hypothesized to characterize gastric-type HCC, but its clinical importance is far from understood. As VSIG1 has also been supposed to be involved in the epithelial-mesenchymal transition (EMT) phenomenon, we checked for the first time in the literature the supposed interaction between VSIG1, TTF-1, and Vimentin (VIM) in HCCs. Immunohistochemical (IHC) stains were performed on 217 paraffin-embedded tissue samples that included tumor cells and normal hepatocytes, which served as positive internal controls. VSIG1 positivity was seen in 113 cases (52.07%). In 71 out of 217 HCCs (32.71%), simultaneous positivity for VSIG1 and TTF-1 was seen, being more specific for G1/G2 carcinomas with a trabecular architecture and a longer OS (p = 0.004). A negative association with VIM was revealed (p < 0.0001). Scirrhous-type HCC proved negative for all three examined markers. The present paper validates the hypothesis of the existence of a gastric-type HCC, which shows a glandular-like architecture and is characterized by double positivity for VSIG1 and TTF-1, vimentin negativity, and a significant OS.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vimentina , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Masculino , Femenino , Persona de Mediana Edad , Vimentina/metabolismo , Anciano , Adulto , Biomarcadores de Tumor/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Anciano de 80 o más Años , Factor Nuclear Tiroideo 1/metabolismo , Factor Nuclear Tiroideo 1/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunohistoquímica
6.
Neurosurg Focus ; 56(5): E17, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691868

RESUMEN

OBJECTIVE: There is a lack of effective drugs to treat the progression and recurrence of chordoma, which is widely resistant to treatment in chemotherapy. The authors investigated the functional and therapeutic relevance of the E1A-binding protein p300 (EP300) in chordoma. METHODS: The expression of EP300 and vimentin was examined in specimens from 9 patients with primary and recurrent chordoma with immunohistochemistry. The biological functions of EP300 were evaluated with Cell Counting Kit-8, clonogenic assays, and transwell assays. The effects of EP300 inhibitors (C646 and SGC-CBP30) on chordoma cell motility were assessed with these assays. The effect of the combination of EP300 inhibitors and cisplatin on chordoma cells was evaluated with clonogenic assays. Reverse transcription quantitative polymerase chain reaction and Western blot techniques were used to explore the potential mechanism of EP300 through upregulation of the expression of vimentin to promote the progression of chordoma. RESULTS: Immunohistochemistry analysis revealed a positive correlation between elevated EP300 expression levels and recurrence. The upregulation of EP300 stimulated the growth of and increased the migratory and invasive capabilities of chordoma cells, along with upregulating vimentin expression and consequently impacting their invasive properties. Conversely, EP300 inhibitors decreased cell proliferation and downregulated vimentin. Furthermore, the combination of EP300 inhibition and cisplatin exhibited an enhanced anticancer effect on chordoma cells, indicating that EP300 may influence chordoma sensitivity to chemotherapy. CONCLUSIONS: These findings indicate that EP300 functions as an oncogene in chordoma. Targeting EP300 offers a novel approach to the development and clinical treatment of chordoma.


Asunto(s)
Cordoma , Progresión de la Enfermedad , Proteína p300 Asociada a E1A , Regulación hacia Arriba , Vimentina , Humanos , Cordoma/genética , Cordoma/metabolismo , Vimentina/metabolismo , Vimentina/genética , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Masculino , Regulación hacia Arriba/efectos de los fármacos , Femenino , Persona de Mediana Edad , Adulto , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Anciano , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
ACS Appl Bio Mater ; 7(6): 3997-4006, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38815185

RESUMEN

Epithelial-mesenchymal transition (EMT) is critical for tumor invasion and many other cell-relevant processes. While much progress has been made about EMT, no report concerns the EMT of cells on topological biomaterial interfaces with significant nuclear deformation. Herein, we prepared a poly(lactide-co-glycolide) micropillar array with an appropriate dimension to enable significant deformation of cell nuclei and examined EMT of a human lung cancer epithelial cell (A549). We show that A549 cells undergo serious nuclear deformation on the micropillar array. The cells express more E-cadherin and less vimentin on the micropillar array than on the smooth surface. After transforming growth factor-ß1 (TGF-ß1) treatment, the expression of E-cadherin as an indicator of the epithelial phenotype is decreased and the expression of vimentin as an indicator of the mesenchymal phenotype is increased for the cells both on smooth surfaces and on micropillar arrays, indicating that EMT occurs even when the cell nuclei are deformed and the culture on the micropillar array more enhances the expression of vimentin. Expression of myosin phosphatase targeting subunit 1 is reduced in the cells on the micropillar array, possibly affecting the turnover of myosin light chain phosphorylation and actin assembly; this makes cells on the micropillar array prefer the epithelial-like phenotype and more sensitive to TGF-ß1. Overall, the micropillar array exhibits a promoting effect on the EMT.


Asunto(s)
Materiales Biocompatibles , Transición Epitelial-Mesenquimal , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Vimentina/metabolismo , Células A549 , Ensayo de Materiales , Tamaño de la Partícula , Cadherinas/metabolismo , Propiedades de Superficie
8.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727931

RESUMEN

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Receptores de Hialuranos , ARN Interferente Pequeño , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos/antagonistas & inhibidores , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , ARN Interferente Pequeño/genética , Vimentina/metabolismo , Vimentina/genética
9.
Nat Commun ; 15(1): 3940, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750036

RESUMEN

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Asunto(s)
Desdiferenciación Celular , Diferenciación Celular , Células Epiteliales , Hepatocitos , Animales , Hepatocitos/citología , Hepatocitos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Organoides/citología , Organoides/metabolismo , Transición Epitelial-Mesenquimal , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Células Cultivadas , Transducción de Señal , Vimentina/metabolismo , Vía de Señalización Hippo , Hígado/citología , Hígado/metabolismo , Ratones Endogámicos C57BL , Masculino , Técnicas de Cultivo de Célula/métodos
10.
Methods Cell Biol ; 187: 205-222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705625

RESUMEN

Correlated super-resolution fluorescence microscopy and cryo-electron microscopy enables imaging with both high labeling specificity and high resolution. Naturally, combining two sophisticated imaging techniques within one workflow also introduces new requirements on hardware, such as the need for a super-resolution fluorescence capable microscope that can be used to image cryogenic samples. In this chapter, we describe the design and use of the "cryoscope"; a microscope designed for single-molecule localization microscopy (SMLM) of cryoEM samples that fits right into established cryoEM workflows. We demonstrate the results that can be achieved with our microscope by imaging fluorescently labeled vimentin, an intermediate filament, within U2OS cells grown on EM grids, and we provide detailed 3d models that encompass the entire design of the microscope.


Asunto(s)
Microscopía por Crioelectrón , Microscopía Fluorescente , Microscopía Fluorescente/métodos , Microscopía por Crioelectrón/métodos , Humanos , Vimentina/metabolismo , Imagenología Tridimensional/métodos , Imagen Individual de Molécula/métodos , Línea Celular Tumoral
11.
Head Neck Pathol ; 18(1): 40, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727794

RESUMEN

BACKGROUND: Odontogenic lesions constitute a heterogeneous group of lesions. CLIC4 protein regulates different cellular processes, including epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation. This study analyzed CLIC4, E-cadherin, Vimentin, and α-SMA immunoexpression in epithelial odontogenic lesions that exhibit different biological behavior. METHODS: It analyzed the immunoexpression of CLIC4, E-cadherin, and Vimentin in the epithelial cells, as well as CLIC4 and α-SMA in the mesenchymal cells, of ameloblastoma (AM) (n = 16), odontogenic keratocyst (OKC) (n = 20), and adenomatoid odontogenic tumor (AOT) (n = 8). Immunoexpressions were categorized as score 0 (0% positive cells), 1 (< 25%), 2 (≥ 25% - < 50%), 3 (≥ 50% - < 75%), or 4 (≥ 75%). RESULTS: Cytoplasmic CLIC4 immunoexpression was higher in AM and AOT (p < 0.001) epithelial cells. Nuclear-cytoplasmic CLIC4 was higher in OKC's epithelial lining (p < 0.001). Membrane (p = 0.012) and membrane-cytoplasmic (p < 0.001) E-cadherin immunoexpression were higher in OKC, while cytoplasmic E-cadherin expression was higher in AM and AOT (p < 0.001). Vimentin immunoexpression was higher in AM and AOT (p < 0.001). Stromal CLIC4 was higher in AM and OKC (p = 0.008). Similarly, α-SMA immunoexpression was higher in AM and OKC (p = 0.037). Correlations in these proteins' immunoexpression were observed in AM and OKC (p < 0.05). CONCLUSIONS: CLIC4 seems to regulate the epithelial-mesenchymal transition, modifying E-cadherin and Vimentin expression. In mesenchymal cells, CLIC4 may play a role in fibroblast-myofibroblast transdifferentiation. CLIC4 may be associated with epithelial odontogenic lesions with aggressive biological behavior.


Asunto(s)
Ameloblastoma , Cadherinas , Canales de Cloruro , Transición Epitelial-Mesenquimal , Tumores Odontogénicos , Vimentina , Humanos , Transición Epitelial-Mesenquimal/fisiología , Canales de Cloruro/metabolismo , Canales de Cloruro/análisis , Cadherinas/metabolismo , Tumores Odontogénicos/patología , Tumores Odontogénicos/metabolismo , Ameloblastoma/patología , Ameloblastoma/metabolismo , Vimentina/metabolismo , Adulto , Femenino , Quistes Odontogénicos/patología , Quistes Odontogénicos/metabolismo , Masculino , Actinas/metabolismo , Adulto Joven , Persona de Mediana Edad , Antígenos CD/metabolismo , Adolescente
12.
Sci Rep ; 14(1): 12374, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811642

RESUMEN

Circulating tumor cells (CTCs) have gathered attention as a biomarker for carcinomas. However, CTCs in sarcomas have received little attention. In this work, we investigated cell surface proteins and antibody combinations for immunofluorescence detection of sarcoma CTCs. A microfluidic device that combines filtration and immunoaffinity using gangliosides 2 and cell surface vimentin (CSV) antibodies was employed to capture CTCs. For CTC detection, antibodies against cytokeratins 7 and 8 (CK), pan-cytokeratin (panCK), or a combination of panCK and CSV were used. Thirty-nine blood samples were collected from 21 patients of various sarcoma subtypes. In the independent samples study, samples were subjected to one of three antibody combination choices. Significant difference in CTC enumeration was found between CK and panCK + CSV, and between panCK and panCK + CSV. Upon stratification of CK+ samples, those of metastatic disease had a higher CTC number than those of localized disease. In the paired samples study involving cytokeratin-positive sarcoma subtypes, using panCK antibody detected more CTCs than CK. Similarly, for osteosarcoma, using panCK + CSV combination resulted in a higher CTC count than panCK. This study emphasized deliberate selection of cell surface proteins for sarcoma CTC detection and subtype stratification for studying cancers as heterogeneous as sarcomas.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Sarcoma , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Sarcoma/patología , Sarcoma/sangre , Sarcoma/diagnóstico , Sarcoma/metabolismo , Biomarcadores de Tumor/sangre , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Queratinas/inmunología , Queratinas/metabolismo , Persona de Mediana Edad , Adulto , Vimentina/metabolismo , Vimentina/inmunología , Anciano , Anticuerpos/inmunología , Línea Celular Tumoral
13.
Anal Cell Pathol (Amst) ; 2024: 8645534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715919

RESUMEN

Materials and Methods: Hsa_circ_0051908 expression was determined using RT-qPCR. HCC cell proliferation, apoptosis, invasion, and migration were assessed using CCK-8 assay, EdU staining, TUNEL staining, flow cytometry, and transwell assay. The molecular mechanism was analyzed using western blotting. In addition, the role of hsa_circ_0051908 in tumor growth was evaluated in vivo. Results: Hsa_circ_0051908 expression was increased in both HCC tissues and cell lines. The proliferation, migration, and invasion of HCC cells were significantly decreased after hsa_circ_0051908 knockdown, while cell apoptosis was notably increased. Furthermore, we found that hsa_circ_0051908 silencing downregulated vimentin and Snail and upregulated E-cadherin. In vivo, hsa_circ_0051908 silencing significantly inhibited the growth of the tumor. Conclusions: Our data provide evidence that hsa_circ_0051908 promotes HCC progression partially by mediating the epithelial-mesenchymal transition process, and it may be used for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , ARN Circular , Animales , Humanos , Masculino , Apoptosis/genética , Cadherinas/metabolismo , Cadherinas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , ARN Circular/genética , ARN Circular/metabolismo , Vimentina/metabolismo , Vimentina/genética
14.
PeerJ ; 12: e17360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737746

RESUMEN

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Asunto(s)
Benzopiranos , Neoplasias de la Mama , Cadherinas , Transición Epitelial-Mesenquimal , Femenino , Humanos , Benzopiranos/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Células MCF-7 , Invasividad Neoplásica/genética , Proteínas Nucleares , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Vimentina/metabolismo , Vimentina/genética
15.
Respir Res ; 25(1): 157, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594676

RESUMEN

BACKGROUND: Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS: CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 µg), or gram-positive peptidoglycan (PGN, 100 µg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS: Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION: Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.


Asunto(s)
Enfermedades Pulmonares , Monocitos , Ratones , Animales , Monocitos/metabolismo , Liposomas/metabolismo , Vimentina/metabolismo , Lipopolisacáridos/farmacología , Ácido Clodrónico/farmacología , Ácido Clodrónico/metabolismo , Linfocitos T CD8-positivos , Pulmón , Macrófagos/metabolismo , Enfermedades Pulmonares/metabolismo , Exposición a Riesgos Ambientales , Colágeno/metabolismo , Ratones Endogámicos C57BL
16.
Shanghai Kou Qiang Yi Xue ; 33(1): 30-35, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583021

RESUMEN

PURPOSE: To explore the mechanism of SETDB1 inhibiting epithelial mesenchymal transition (EMT),migration and invasion in oral cancer via SOX 7 methylation. METHODS: SETDB1 and SOX7 mRNA and protein expression levels in KB cells of oral cancer and oral mucosal epithelial ATCC cells were determined by qRT-PCR and Western blot (WB). SETDB1 si-RNA was structured, then transfect into KB cells of oral cancer by liposome-mediated method. siRNA-SETDB1 was the experimental group (si-S), siRNA empty vector was the negative control group (si-N), and untransfected KB cells were the blank control group(NC). SETDB1 mRNA and protein expression levels were detected by qRT-PCR and Western blot(WB), to verify the transfection effect. The methylation levels of SOX7 were determined by pyrosequencing. The expression of N-cadherin, Vimentin, ß-catenin, and Slug proteins was detected by WB. Cell viability was measured by MTT assay, migration ability was tested by scratch healing assay, and invasion ability was tested by Transwell chamber assay. Statistical analysis was performed with SPSS 21.0 software package. RESULTS: The results of Rt-qPCR and WB showed that the SETDB1 mRNA and protein expression decreased significantly in si-S group(P<0.05). Pyrosequencing test results showed that the regulation of SETDB1 could significantly reduce the SOX7 methylation rate and increased the SOX7 protein expression. WB results showed that knockdown of SETDB1 significantly inhibited the expression of EMT-related proteins N-cadherin, Vimentin, ß-catenin and Slug in oral cancer KB cells (P<0.05). The results of cell functology experiments showed that knockdown of SETDB1 could significantly inhibit survival, migration and invasion of KB cells. CONCLUSIONS: Downregulation of SETDB1 could suppress EMT, migration and invasion of oral cancer cells by regulating SOX7 methylation level, providing new ideas and targets for the diagnosis and treatment of oral cancer.


Asunto(s)
Neoplasias de la Boca , Factores de Transcripción SOXF , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Regulación hacia Abajo , Línea Celular Tumoral , Vimentina/genética , Vimentina/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias de la Boca/genética , Transición Epitelial-Mesenquimal , ARN Mensajero/metabolismo , Metilación , Movimiento Celular/genética , Proliferación Celular , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
17.
Medicine (Baltimore) ; 103(17): e37934, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669432

RESUMEN

BACKGROUND: Parathyroid hormone-related peptide (PTHrP) is known to have a pivotal role in the progression of various solid tumors, among which prostate cancer stands out. However, the extent of PTHrP expression and its clinical implications in prostate cancer patients remain shrouded in obscurity. The primary objective of this research endeavor was to shed light on the relevance of PTHrP in the context of prostate cancer patients and to uncover the potential underlying mechanisms. METHODS: The expression of PTHrP, E-cadherin, and vimentin in tumor tissues of 88 prostate cancer patients was evaluated by immunohistochemical technique. Subsequently, the associations between PTHrP and clinicopathological parameters and prognosis of patients with prostate cancer were analyzed. RESULTS: Immunohistochemical analysis showed that the expression rates of PTHrP, E-cadherin, and vimentin in prostate cancer tissues were 95.5%, 88.6%, and 84.1%, respectively. Patients with a high level of PTHrP had a decreased expression of E-cadherin (P = .013) and an increased expression of vimentin (P = .010) compared with patients with a low level of PTHrP. Besides, the high expression of PTHrP was significantly correlated with a higher level of initial prostate-specific antigen (P = .026), positive lymph node metastasis (P = .010), osseous metastasis (P = .004), and Gleason score (P = .026). Moreover, patients with a high level of PTHrP had shorter progression-free survival (P = .002) than patients with a low level of PTHrP. CONCLUSION: The present study indicates that PTHrP is associated with risk factors of poor outcomes in prostate cancer, while epithelial-mesenchymal transition may be involved in this process.


Asunto(s)
Cadherinas , Proteína Relacionada con la Hormona Paratiroidea , Neoplasias de la Próstata , Vimentina , Humanos , Masculino , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Pronóstico , Anciano , Vimentina/metabolismo , Cadherinas/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Inmunohistoquímica , Antígeno Prostático Específico/sangre , Metástasis Linfática
18.
Mar Drugs ; 22(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667800

RESUMEN

Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their structures were elucidated by NMR and MS data. Compounds 2-4 exhibited weak cytotoxicity against human colorectal cancer cells (HCT-116), showing IC50 values of 41.6, 45.0, and 37.3 µM, respectively. Furthermore, compounds 3 and 4 significantly suppressed the invasion of HCT-116 cells while also downregulating the expression of vascular endothelial growth factor receptor 1 (VEGFR-1) and vimentin proteins, which are key markers associated with angiogenesis and epithelial-mesenchymal transition (EMT). Our findings suggest that compounds 3 and 4 may exert their anti-invasive effects on tumor cells by inhibiting the expression of VEGFR-1 and impeding the process of EMT.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Poríferos , Terpenos , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Poríferos/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Terpenos/farmacología , Terpenos/aislamiento & purificación , Terpenos/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células HCT116 , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vimentina/metabolismo , Línea Celular Tumoral , China
19.
J Exp Clin Cancer Res ; 43(1): 129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685125

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Neoplasias Gástricas , Vimentina , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Estudios Prospectivos , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Vimentina/metabolismo
20.
Cells ; 13(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38606999

RESUMEN

Cervical cancer (CC) is the fourth leading cancer among women and is one of the principal gynecological malignancies. In the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role during malignant progression, exhibiting a variety of heterogeneous phenotypes. CAFs express phenotypic markers like fibroblast activation protein (FAP), vimentin, S100A4, α-smooth muscle actin (αSMA), and functional markers such as MMP9. This study aimed to evaluate the protein expression of vimentin, S100A4, αSMA, FAP, and MMP9 in mesenchymal stem cells (MSC)-CAF cells, as well as in cervical cancer samples. MSC cells were stimulated with HeLa and SiHa tumor cell supernatants, followed by protein evaluation and cytokine profile to confirm differentiation towards a CAF phenotype. In addition, automated immunohistochemistry (IHQa) was performed to evaluate the expression of these proteins in CC samples at different stages. Our findings revealed a high expression of FAP in stimulated MSC cells, accompanied by the secretion of pro/anti-inflammatory cytokines. In the other hand, CC samples were observed to have high expression of FAP, vimentin, αSMA, and MMP9. Most importantly, there was a high expression of their activation proteins αSMA and FAP during the different stages. In the early stages, a myofibroblast-like phenotype (CAFs αSMA+ FAP+), and in the late stages a protumoral phenotype (CAF αSMA- FAP+). In summary, FAP has a crucial role in the activation of CAFs during cervical cancer progression.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Cuello Uterino , Humanos , Femenino , Fibroblastos Asociados al Cáncer/metabolismo , Vimentina/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Procesos Neoplásicos , Fenotipo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA