Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Nature ; 627(8005): 873-879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418882

RESUMEN

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Asunto(s)
Proteínas Nucleares , Nucleosomas , Nucleotidiltransferasas , Proteolisis , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Degrones , Infecciones por Virus ADN/inmunología , Virus ADN/inmunología , Virus ADN/metabolismo , ADN Viral/inmunología , ADN Viral/metabolismo , Inmunidad Innata , Reconocimiento de Inmunidad Innata , Interferón Tipo I/inmunología , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
2.
J Med Virol ; 95(1): e28310, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377393

RESUMEN

Cellular infections by DNA viruses trigger innate immune responses mediated by DNA sensors. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway has been identified as a DNA-sensing pathway that activates interferons in response to viral infection and, thus, mediates host defense against viruses. Previous studies have identified oncogenes E7 and E1A of the DNA tumor viruses, human papillomavirus 18 (HPV18) and adenovirus, respectively, as inhibitors of the cGAS-STING pathway. However, the function of STING in infected cells and the mechanism by which HPV18 E7 antagonizes STING-induced Interferon beta production remain unknown. We report that HPV18 E7 selectively antagonizes STING-triggered nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation but not IRF3 activation. HPV18 E7 binds to STING in a region critical for NF-κB activation and blocks the nuclear accumulation of p65. Moreover, E7 inhibition of STING-triggered NF-κB activation is related to HPV pathogenicity but not E7-Rb binding. HPV18 E7, severe acute respiratory syndrome coronavirus-2 open reading frame 3a, human immunodeficiency virus-2 viral protein X, and Kaposi's sarcoma-associated herpesvirus KSHV viral interferon regulatory factor 1 selectively inhibited STING-triggered NF-κB or IRF3 activation, suggesting a convergent evolution among these viruses toward antagonizing host innate immunity. Collectively, selective suppression of the cGAS-STING pathway by viral proteins is likely to be a key pathogenic determinant, making it a promising target for treating oncogenic virus-induced tumor diseases.


Asunto(s)
COVID-19 , FN-kappa B , Humanos , FN-kappa B/metabolismo , Interferón beta/genética , Papillomavirus Humano 18/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Inmunidad Innata , ADN , Virus ADN/genética , Virus ADN/metabolismo , Proteínas Oncogénicas
3.
Viruses ; 13(8)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34452478

RESUMEN

The apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) enzyme family in humans has 11 members with diverse functions in metabolism and immunity [...].


Asunto(s)
Desaminasas APOBEC-1/genética , Virus ADN/inmunología , Inmunidad Innata , Desaminasas APOBEC-1/clasificación , Desaminasas APOBEC-1/metabolismo , Animales , Virus ADN/metabolismo , Humanos , Ratones , Edición de ARN
4.
Viruses ; 13(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064125

RESUMEN

To initiate infection, a virus enters a host cell typically via receptor-dependent endocytosis. It then penetrates a subcellular membrane, reaching a destination that supports transcription, translation, and replication of the viral genome. These steps lead to assembly and morphogenesis of the new viral progeny. The mature virus finally exits the host cell to begin the next infection cycle. Strikingly, viruses hijack host molecular chaperones to accomplish these distinct entry steps. Here we highlight how DNA viruses, including polyomavirus and the human papillomavirus, exploit soluble and membrane-associated chaperones to enter a cell, penetrating and escaping an intracellular membrane en route for infection. We also describe the mechanism by which RNA viruses-including flavivirus and coronavirus-co-opt cytosolic and organelle-selective chaperones to promote viral endocytosis, protein biosynthesis, replication, and assembly. These examples underscore the importance of host chaperones during virus infection, potentially revealing novel antiviral strategies to combat virus-induced diseases.


Asunto(s)
Virus ADN/fisiología , Chaperonas Moleculares/metabolismo , Virus ARN/fisiología , Citosol/metabolismo , Virus ADN/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Endosomas/metabolismo , Endosomas/virología , Interacciones Huésped-Patógeno , Membranas Intracelulares/metabolismo , Virus ARN/metabolismo , Internalización del Virus , Replicación Viral
5.
mSphere ; 5(6)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177215

RESUMEN

Double-stranded RNA (dsRNA) is the hallmark of many viral infections. dsRNA is produced either by RNA viruses during replication or by DNA viruses upon convergent transcription. Synthetic dsRNA is also able to mimic viral-induced activation of innate immune response and cell death. In this study, we employed a genome-wide CRISPR-Cas9 loss-of-function screen based on cell survival in order to identify genes implicated in the host response to dsRNA. By challenging HCT116 human cells with either synthetic dsRNA or Sindbis virus (SINV), we identified the heparan sulfate (HS) pathway as a crucial factor for dsRNA entry, and we validated SINV dependency on HS. Interestingly, we uncovered a novel role for COG4, a component of the conserved oligomeric Golgi (COG) complex, as a factor involved in cell survival to both dsRNA and SINV in human cells. We showed that COG4 knockout led to a decrease of extracellular HS that specifically affected dsRNA transfection efficiency and reduced viral production, which explains the increased cell survival of these mutants.IMPORTANCE When facing a viral infection, the organism has to put in place a number of defense mechanisms in order to clear the pathogen from the cell. At the early phase of this preparation for fighting against the invader, the innate immune response is triggered by the sensing of danger signals. Among those molecular cues, double-stranded RNA (dsRNA) is a very potent inducer of different reactions at the cellular level that can ultimately lead to cell death. Using a genome-wide screening approach, we set to identify genes involved in dsRNA entry, sensing, and apoptosis induction in human cells. This allowed us to determine that the heparan sulfate pathway and the conserved oligomeric Golgi complex are key determinants allowing entry of both dsRNA and viral nucleic acid leading to cell death.


Asunto(s)
Virus ADN/metabolismo , Virus ARN/metabolismo , ARN Bicatenario/metabolismo , Virosis/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Aparato de Golgi/metabolismo , Células HCT116 , Heparitina Sulfato/metabolismo , Humanos , Inmunidad Innata , Virosis/patología
6.
Viruses ; 11(9)2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31450758

RESUMEN

Autophagy is a catabolic biological process in the body. By targeting exogenous microorganisms and aged intracellular proteins and organelles and sending them to the lysosome for phagocytosis and degradation, autophagy contributes to energy recycling. When cells are stimulated by exogenous pathogenic microorganisms such as viruses, activation or inhibition of autophagy is often triggered. As autophagy has antiviral effects, many viruses may escape and resist the process by encoding viral proteins. At the same time, viruses can also use autophagy to enhance their replication or increase the persistence of latent infections. Here, we give a brief overview of autophagy and DNA viruses and comprehensively review the known interactions between human and animal DNA viruses and autophagy and the role and mechanisms of autophagy in viral DNA replication and DNA virus-induced innate and acquired immunity.


Asunto(s)
Autofagia/fisiología , Virus ADN , Inmunidad Adaptativa , Adenoviridae/crecimiento & desarrollo , Adenoviridae/inmunología , Adenoviridae/metabolismo , Animales , Autofagosomas/metabolismo , Virus ADN/crecimiento & desarrollo , Virus ADN/inmunología , Virus ADN/metabolismo , Herpesviridae/crecimiento & desarrollo , Herpesviridae/inmunología , Herpesviridae/metabolismo , Interacciones Microbiota-Huesped , Humanos , Evasión Inmune , Inmunidad Innata , Lisosomas/metabolismo , Papillomaviridae/crecimiento & desarrollo , Papillomaviridae/inmunología , Papillomaviridae/metabolismo , Fagocitosis/fisiología , Transducción de Señal , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Replicación Viral/inmunología
7.
Proc Natl Acad Sci U S A ; 116(24): 11997-12006, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31127039

RESUMEN

Interferons (IFNs) represent an important host defense against viruses. Type I IFNs induce JAK-STAT signaling and expression of IFN-stimulated genes (ISGs), which mediate antiviral activity. Histone deacetylases (HDACs) perform multiple functions in regulating gene expression and some class I HDACs and the class IV HDAC, HDAC11, influence type I IFN signaling. Here, HDAC4, a class II HDAC, is shown to promote type I IFN signaling and coprecipitate with STAT2. Pharmacological inhibition of class II HDAC activity, or knockout of HDAC4 from HEK-293T and HeLa cells, caused a defective response to IFN-α. This defect in HDAC4-/- cells was rescued by reintroduction of HDAC4 or catalytically inactive HDAC4, but not HDAC1 or HDAC5. ChIP analysis showed HDAC4 was recruited to ISG promoters following IFN stimulation and was needed for binding of STAT2 to these promoters. The biological importance of HDAC4 as a virus restriction factor was illustrated by the observations that (i) the replication and spread of vaccinia virus (VACV) and herpes simplex virus type 1 (HSV-1) were enhanced in HDAC4-/- cells and inhibited by overexpression of HDAC4; and (ii) HDAC4 is targeted for proteasomal degradation during VACV infection by VACV protein C6, a multifunctional IFN antagonist that coprecipitates with HDAC4 and is necessary and sufficient for HDAC4 degradation.


Asunto(s)
Virus ADN/metabolismo , Histona Desacetilasas/metabolismo , Interferón Tipo I/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Virus Vaccinia/metabolismo , Vaccinia/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Vaccinia/virología , Replicación Viral/fisiología
8.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31019052

RESUMEN

Most people living with HIV (PLWH) are coinfected with cytomegalovirus (CMV). Subclinical CMV replication is associated with immune dysfunction and with increased HIV DNA in antiretroviral therapy (ART)-naive and -suppressed PLWH. To identify immunological mechanisms by which CMV could favor HIV persistence, we analyzed 181 peripheral blood mononuclear cell (PBMC) samples from 64 PLWH starting ART during early HIV infection with subsequent virologic suppression up to 58 months. In each sample, we measured levels of CMV and Epstein-Barr virus (EBV) DNA by droplet digital PCR (ddPCR). We also measured expression of immunological markers for activation (HLA-DR+ CD38+), cycling (Ki-67+), degranulation (CD107a+), and the immune checkpoint protein PD-1 on CD4+ and CD8+ T cell memory subsets. Significant differences in percentages of lymphocyte markers by CMV/EBV shedding were identified using generalized linear mixed-effects models. Overall, CMV DNA was detected at 60/181 time points. At the time of ART initiation, the presence of detectable CMV DNA was associated with increased CD4+ T cell activation and CD107a expression and with increased CD8+ T cellular cycling and reduced CD107a expression on CD8+ T cells. While some effects disappeared during ART, greater CD4+ T cell activation and reduced CD107a expression on CD8+ T cells persisted when CMV was present (P < 0.01). In contrast, EBV was not associated with any immunological differences. Among the covariates, peak HIV RNA and CD4/CD8 ratio had the most significant effect on the immune system. In conclusion, our study identified immune differences in PLWH with detectable CMV starting early ART, which may represent an additional hurdle for HIV cure efforts.IMPORTANCE Chronic viral infections such as with HIV and CMV last a lifetime and can continually antagonize the immune system. Both viruses are associated with higher expression of inflammation markers, and recent evidence suggests that CMV may complicate efforts to deplete HIV reservoirs. Our group and others have shown that CMV shedding is associated with a larger HIV reservoir. Subclinical CMV replication could favor HIV persistence via bystander effects on our immune system. In this study, we collected longitudinal PBMC samples from people starting ART and measured immune changes associated with detectable CMV. We found that when CMV was detectable, CD4+ T cell activation was higher and CD8+ T cell degranulation was lower. Both results may contribute to the slower decay of the size of the reservoir during CMV replication, since activated CD4+ T cells are more vulnerable to HIV infection, while the loss of CD8+ T cell degranulation may impede the proper killing of infected cells.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Citomegalovirus/genética , Virus ADN/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Adulto , Fármacos Anti-VIH/uso terapéutico , Relación CD4-CD8 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Coinfección , VIH-1 , Herpesvirus Humano 4 , Humanos , Activación de Linfocitos , Masculino , Receptor de Muerte Celular Programada 1 , Minorías Sexuales y de Género , Replicación Viral , Esparcimiento de Virus
9.
Nature ; 567(7747): 262-266, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842662

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self DNA in the cytoplasm1. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein STING, which then activates the kinases IKK and TBK1 to induce interferons and other cytokines2-6. Here we report that STING also activates autophagy through a mechanism that is independent of TBK1 activation and interferon induction. Upon binding cGAMP, STING translocates to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and the Golgi in a process that is dependent on the COP-II complex and ARF GTPases. STING-containing ERGIC serves as a membrane source for LC3 lipidation, which is a key step in autophagosome biogenesis. cGAMP induced LC3 lipidation through a pathway that is dependent on WIPI2 and ATG5 but independent of the ULK and VPS34-beclin kinase complexes. Furthermore, we show that cGAMP-induced autophagy is important for the clearance of DNA and viruses in the cytosol. Interestingly, STING from the sea anemone Nematostella vectensis induces autophagy but not interferons in response to stimulation by cGAMP, which suggests that induction of autophagy is a primordial function of the cGAS-STING pathway.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Animales , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1/deficiencia , Beclina-1/genética , Beclina-1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Citosol/virología , Virus ADN/genética , Virus ADN/metabolismo , ADN Viral/metabolismo , Retículo Endoplásmico/metabolismo , Evolución Molecular , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Interferones/biosíntesis , Interferones/inmunología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/metabolismo , Proteínas de Unión a Fosfato , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Anémonas de Mar , Proteínas de Transporte Vesicular/metabolismo
10.
Arch Immunol Ther Exp (Warsz) ; 67(1): 41-48, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30196473

RESUMEN

Nuclear factor (NF)-κB is a major regulator of antiviral response. Viral pathogens exploit NF-κB activation pathways to avoid cellular mechanisms that eliminate the infection. Canonical (classical) NF-κB signaling, which regulates innate immune response, cell survival and inflammation, is often manipulated by viral pathogens that can counteract antiviral response. Oncogenic viruses can modulate not only canonical, but also non-canonical (alternative) NF-κB activation pathways. The non-canonical NF-κB signaling is responsible for adaptive immunity and plays a role in lymphoid organogenesis, B cell development, as well as bone metabolism. Thus, non-canonical NF-κB activation has been linked to lymphoid malignancies. However, some data strongly suggest that the non-canonical NF-κB activation pathway may also function in innate immunity and is modulated by certain non-oncogenic viruses. Collectively, these findings show the importance of studying the impact of different groups of viral pathogens on alternative NF-κB activation. This mini-review focuses on the influence of non-oncogenic viruses on the components of non-canonical NF-κB signaling.


Asunto(s)
Virus ADN/patogenicidad , FN-kappa B/metabolismo , Virus ARN/patogenicidad , Virosis/virología , Inmunidad Adaptativa , Animales , Virus ADN/inmunología , Virus ADN/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , FN-kappa B/inmunología , Virus ARN/inmunología , Virus ARN/metabolismo , Transducción de Señal , Virosis/inmunología , Virosis/metabolismo
11.
Nat Commun ; 9(1): 3506, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158636

RESUMEN

The transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells. Here, Nrf2 activation decreases STING expression and responsiveness to STING agonists while increasing susceptibility to infection with DNA viruses. Mechanistically, Nrf2 regulates STING expression by decreasing STING mRNA stability. Repression of STING by Nrf2 occurs in metabolically reprogrammed cells following TLR4/7 engagement, and is inducible by a cell-permeable derivative of the TCA-cycle-derived metabolite itaconate (4-octyl-itaconate, 4-OI). Additionally, engagement of this pathway by 4-OI or the Nrf2 inducer sulforaphane is sufficient to repress STING expression and type I IFN production in cells from patients with STING-dependent interferonopathies. We propose Nrf2 inducers as a future treatment option in STING-dependent inflammatory diseases.


Asunto(s)
Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Virus ADN/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/genética , Ratones , Factor 2 Relacionado con NF-E2/genética , Células RAW 264.7 , ARN Mensajero/metabolismo , Succinatos/farmacología
12.
Nat Commun ; 8: 14392, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28194029

RESUMEN

Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.


Asunto(s)
ADN/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfoproteínas/metabolismo , Línea Celular , Virus ADN/metabolismo , Expresión Génica , Humanos , Inmunidad Innata , Interferón beta/genética , Interferón beta/metabolismo , Queratinocitos/inmunología , Mutación , Proteínas Nucleares/genética , Nucleótidos Cíclicos/metabolismo , Fosfoproteínas/genética , Fosforilación , Transporte de Proteínas
13.
Adv Exp Med Biol ; 963: 359-388, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197923

RESUMEN

Viruses have evolved elaborate means to regulate diverse cellular pathways in order to create a cellular environment that facilitates viral survival and reproduction. This includes enhancing viral macromolecular synthesis and assembly, as well as preventing antiviral responses, including intrinsic, innate, and adaptive immunity. There are numerous mechanisms by which viruses mediate their effects on the host cell, and this includes targeting various cellular post-translational modification systems, including sumoylation. The wide-ranging impact of sumoylation on cellular processes such as transcriptional regulation, apoptosis, stress response, and cell cycle control makes it an attractive target for viral dysregulation. To date, proteins from both RNA and DNA virus families have been shown to be modified by SUMO conjugation, and this modification appears critical for viral protein function. More interestingly, members of the several viral families have been shown to modulate sumoylation, including papillomaviruses, adenoviruses , herpesviruses, orthomyxoviruses, filoviruses , and picornaviruses . This chapter will focus on mechanisms by which sumoylation both impacts human viruses and is used by viruses to promote viral infection and disease.


Asunto(s)
Virus ADN/metabolismo , Virus ARN/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Virosis/metabolismo , Animales , Virus ADN/genética , Virus ADN/patogenicidad , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Virus ARN/genética , Virus ARN/patogenicidad , Proteínas Virales/genética , Virosis/genética , Virosis/virología
14.
Sci Rep ; 6: 19977, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26829401

RESUMEN

In terms of infected human individuals, herpesviruses range among the most successful virus families. Subclinical herpesviral infections in healthy individuals contrast with life-threatening syndromes under immunocompromising and immunoimmature conditions. Based on our finding that cytomegaloviruses interact with Cullin Roc ubiquitin ligases (CRLs) in the context of interferon antagonism, we systematically assessed viral dependency on CRLs by utilizing the drug MLN4924. CRL activity is regulated through the conjugation of Cullins with the ubiquitin-like molecule Nedd8. By inhibiting the Nedd8-activating Enzyme (NAE), MLN4924 interferes with Nedd8 conjugation and CRL activity. MLN4924 exhibited pronounced antiviral activity against mouse and human cytomegalovirus, herpes simplex virus (HSV)- 1 (including multi-drug resistant clinical isolates), HSV-2, adeno and influenza viruses. Human cytomegalovirus genome amplification was blocked at nanomolar MLN4924 concentrations. Global proteome analyses revealed that MLN4924 blocks cytomegaloviral replication despite increased IE1 amounts. Expression of dominant negative Cullins assigned this IE regulation to defined Cullin molecules and phenocopied the antiviral effect of MLN4924.


Asunto(s)
Antivirales/farmacología , Ciclopentanos/farmacología , Infecciones por Virus ADN/tratamiento farmacológico , Virus ADN/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Orthomyxoviridae/metabolismo , Pirimidinas/farmacología , Ubiquitinas/antagonistas & inhibidores , Animales , Infecciones por Virus ADN/metabolismo , Infecciones por Virus ADN/patología , Humanos , Ratones , Proteína NEDD8 , Células 3T3 NIH , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Ubiquitinas/metabolismo
15.
Viruses ; 7(7): 3574-85, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26154016

RESUMEN

All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.


Asunto(s)
Infecciones por Virus ADN/metabolismo , Infecciones por Virus ADN/virología , Virus ADN/metabolismo , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Infecciones por Virus ADN/genética , Virus ADN/clasificación , Virus ADN/genética , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Proteínas Represoras/genética
16.
Fish Shellfish Immunol ; 46(2): 268-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26072141

RESUMEN

Cyprinid herpesvirus 2 (CyHV-2) is the pathogen responsible for herpesviral hematopoietic necrosis disease, which causes huge losses on aquaculture. So far the studies of CyHV-2 mainly focus on the identification and detection of this virus, but little is known about the role of specific CyHV-2 genes in the infection process. Based on the genomic information, CyHV-2 ORF104 encodes a kinase-like protein, which is highly conserved among the three CyHVs. Our study was initiated to investigate the role of kinase-like protein ORF104 during virus infection. Subcellular localization study showed that ORF104 was mainly expressed in the nucleus in both human HEK293T and fish EPC cells. However, deletion of the putative nuclear localization signal of ORF104 (ORF104M) resulted in the cytoplasmic distribution in HEK293T. We then examined whether MAPKs were involved in the ORF104-mediated signaling pathway by overexpressing ORF104 and ORF104M in HEK293T. Overexpression of ORF104 and ORF104M resulted in the up-regulation of p38 phosphorylation, but not JNK or ERK, indicating that ORF104 specifically activates p38 signaling pathway. In vivo study showed that CyHV-2 infection enhanced p38 phosphorylation in gibel carp (Carassius auratus gibelio). Interestingly, p38 inhibitor SB203580 strongly reduced fish death caused by CyHV-2 infection. Therefore, our study for the first time reveals the function of ORF104 during CyHV-2 infection, indicating that ORF104 is a potential vaccine candidate for CyHV-2.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Virus ADN/genética , Enfermedades de los Peces/virología , Carpa Dorada , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Infecciones por Virus ADN/virología , Virus ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Imidazoles/farmacología , Piridinas/farmacología , Alineación de Secuencia/veterinaria , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Biol Direct ; 9: 6, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24773695

RESUMEN

Polintons (also known as Mavericks) and Tlr elements of Tetrahymena thermophila represent two families of large DNA transposons widespread in eukaryotes. Here, we show that both Polintons and Tlr elements encode two key virion proteins, the major capsid protein with the double jelly-roll fold and the minor capsid protein, known as the penton, with the single jelly-roll topology. This observation along with the previously noted conservation of the genes for viral genome packaging ATPase and adenovirus-like protease strongly suggests that Polintons and Tlr elements combine features of bona fide viruses and transposons. We propose the name 'Polintoviruses' to denote these putative viruses that could have played a central role in the evolution of several groups of DNA viruses of eukaryotes.


Asunto(s)
Proteínas de la Cápside/genética , Elementos Transponibles de ADN , Virus ADN/genética , Tetrahymena thermophila/virología , Virión/genética , Secuencia de Aminoácidos , Proteínas de la Cápside/metabolismo , Virus ADN/metabolismo , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Virión/metabolismo
18.
J Invertebr Pathol ; 112 Suppl: S44-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22465629

RESUMEN

The Musca domestica hytrosavirus (MdHV), a member of the family Hyrosaviridae, is a large, dsDNA, enveloped virus that infects adult house flies and causes a diagnostic hypertrophy of the salivary gland. Herein, studies were directed at identifying key structural components of the viral envelope and nucleocapsid. SDS-PAGE of detergent-treated virus fractions identified protein bands unique to the envelope and nucleocapsid components. Using prior LC-MSMS data we identified the viral ORF associated with the major envelope band, cloned and expressed recombinant viral antigens, and prepared a series of polyclonal sera. Western blots confirmed that antibodies recognized the target viral antigen and provided evidence that the viral protein MdHV96 underwent post-translational processing; antibodies bound to the target high molecular weight parent molecule as well as distinct sets of smaller bands. Immuno gold electron microscopy demonstrated that the anti-MdHV96 sera recognized target antigens associated with the envelope. The nucleocapsids migrated from the virogenic stroma in the nucleus through the nuclear membrane into the cytoplasm, where they acquired an initial envelope that contained MdHV96. This major envelope protein, appeared to incorporate into intracellular membranes of both the caniculi and rough endoplasmic reticulum membranes and mediate binding to the nucleocapsids. Oral infection bioassays demonstrated that the anti-HV96 polyclonal sera acted as neutralizing agents in suppressing the levels of orally acquired infections.


Asunto(s)
Virus ADN/metabolismo , Moscas Domésticas/virología , Virus de Insectos/metabolismo , Proteínas del Envoltorio Viral/análisis , Animales , Western Blotting , Virus ADN/inmunología , Moscas Domésticas/inmunología , Inmunohistoquímica , Virus de Insectos/inmunología , Microscopía Electrónica de Transmisión , Nucleocápside/inmunología , Nucleocápside/metabolismo , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo
19.
J Gen Virol ; 94(Pt 1): 193-208, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23052395

RESUMEN

The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.


Asunto(s)
Virus ADN/genética , Virus ADN/metabolismo , Hipertrofia/virología , Morfogénesis/genética , Glándulas Salivales/virología , Moscas Tse-Tse/virología , Proteínas del Envoltorio Viral/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Hipertrofia/patología , Nucleocápside/genética , Nucleocápside/metabolismo , Proteoma/genética , Proteoma/metabolismo , Glándulas Salivales/patología , Proteínas del Envoltorio Viral/genética , Virión/genética , Virión/metabolismo
20.
PLoS One ; 7(10): e45847, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056221

RESUMEN

Acidianus two-tailed virus (ATV) infects crenarchaea of the genus Acidianus living in terrestrial thermal springs at extremely high temperatures and low pH. ATV is a member of the Bicaudaviridae virus family and undergoes extra-cellular development of two tails, a process that is unique in the viral world. To understand this intriguing phenomenon, we have undertaken structural studies of ATV virion proteins and here we present the crystal structure of one of these proteins, ATV(ORF273). ATV(ORF273) forms tetramers in solution and a molecular envelope is provided for the tetramer, computed from small-angle X-ray scattering (SAXS) data. The crystal structure has properties typical of hyperthermostable proteins, including a relatively high number of salt bridges. However, the protein also exhibits flexible loops and surface pockets. Remarkably, ATV(ORF273) displays a new α + ß protein fold, consistent with the absence of homologues of this protein in public sequence databases.


Asunto(s)
Acidianus/virología , Virus ADN/metabolismo , Proteínas Estructurales Virales/química , Dicroismo Circular , Cristalografía por Rayos X , Calor , Concentración de Iones de Hidrógeno , Modelos Moleculares , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA