Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Virol ; 88(16): 8956-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24872589

RESUMEN

Human T-cell leukemia virus types 3 and 4 (HTLV-3 and HTLV-4) are recently isolated retroviruses. We have previously characterized HTLV-3- and HTLV-4-encoded antisense genes, termed APH-3 and APH-4, respectively, which, in contrast to HBZ, the HTLV-1 homologue, do not contain a typical bZIP domain (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). As HBZ differentially modulates the transactivation potential of various Jun family members, the effect of APH-3 and APH-4 on JunD-, c-Jun-, and JunB-mediated transcriptional activation was investigated. We first showed that APH-3 and APH-4 upregulated the transactivation potential of all tested Jun family members. Using an human telomerase catalytic subunit (hTERT) promoter construct, our results also highlighted that, unlike HBZ, which solely modulates hTERT expression via JunD, both APH-3 and APH-4 acted positively on the transactivation of the hTERT promoter mediated by tested Jun factors. Coimmunoprecipitation experiments demonstrated that these Jun proteins interacted with APH-3 and APH-4. Although no activation domain was identified for APH proteins, the activation domain of c-Jun was very important in the observed upregulation of its activation potential. We further showed that APH-3 and APH-4 required their putative bZIP-like domains and corresponding leucine residues for interaction and modulation of the transactivation potential of Jun factors. Our results demonstrate that HTLV-encoded antisense proteins behave differently, and that the bZIP-like domains of both APH-3 and APH-4 have retained their interaction potential for Jun members. These studies are important in assessing the differences between HBZ and other antisense proteins, which might further contribute to determining the role of HBZ in HTLV-1-associated diseases. IMPORTANCE HBZ, the antisense transcript-encoded protein from HTLV-1, is now well recognized as a potential factor for adult T-cell leukemia/lymphoma development. In order to better appreciate the mechanism of action of HBZ, comparison to antisense proteins from other HTLV viruses is important. Little is known in relation to the seemingly nonpathogenic HTLV-3 and HTLV-4 viruses, and studies of their antisense proteins are limited to our previously reported study (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). Here, we demonstrate that Jun transcription factors are differently affected by APH-3 and APH-4 compared to HBZ. These intriguing findings suggest that these proteins act differently on viral replication but also on cellular gene expression, and that highlighting their differences of action might lead to important information allowing us to understand the link between HTLV-1 HBZ and ATL in infected individuals.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN sin Sentido/genética , Virus Linfotrópico T Tipo 3 Humano/genética , Virus Linfotrópico T Tipo 3 Humano/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Activación Transcripcional/genética , Animales , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Deltaretrovirus/genética , Deltaretrovirus/metabolismo , Células HEK293 , Células HeLa , Humanos , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-jun/genética , Telomerasa/genética , Telomerasa/metabolismo , Transcripción Genética/genética , Regulación hacia Arriba/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
PLoS One ; 7(7): e41003, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911729

RESUMEN

Human T-cell Lymphotropic Viruses type 1 (HTLV-1) is the etiological agent of Adult T-cell Leukemia/Lymphoma. Although associated with lymphocytosis, HTLV-2 infection is not associated with any malignant hematological disease. Similarly, no infection-related symptom has been detected in HTLV-3-infected individuals studied so far. Differences in individual Tax transcriptional activity might account for these distinct physiopathological outcomes. Tax-1 and Tax-3 possess a PDZ binding motif in their sequence. Interestingly, this motif, which is critical for Tax-1 transforming activity, is absent from Tax-2. We used the DNA microarray technology to analyze and compare the global gene expression profiles of different T- and non T-cell types expressing Tax-1, Tax-2 or Tax-3 viral transactivators. In a T-cell line, this analysis allowed us to identify 48 genes whose expression is commonly affected by all Tax proteins and are hence characteristic of the HTLV infection, independently of the virus type. Importantly, we also identified a subset of genes (n = 70) which are specifically up-regulated by Tax-1 and Tax-3, while Tax-1 and Tax-2 shared only 1 gene and Tax-2 and Tax-3 shared 8 genes. These results demonstrate that Tax-3 and Tax-1 are closely related in terms of cellular gene deregulation. Analysis of the molecular interactions existing between those Tax-1/Tax-3 deregulated genes then allowed us to highlight biological networks of genes characteristic of HTLV-1 and HTLV-3 infection. The majority of those up-regulated genes are functionally linked in biological processes characteristic of HTLV-1-infected T-cells expressing Tax such as regulation of transcription and apoptosis, activation of the NF-κB cascade, T-cell mediated immunity and induction of cell proliferation and differentiation. In conclusion, our results demonstrate for the first time that, in T- and non T-cells types, Tax-3 is a functional analogue of Tax-1 in terms of transcriptional activation and suggest that HTLV-3 might share pathogenic features with HTLV-1 in vivo.


Asunto(s)
Transformación Celular Viral , Perfilación de la Expresión Génica , Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 3 Humano/genética , Virus Linfotrópico T Tipo 3 Humano/metabolismo , Activación Transcripcional , Línea Celular Tumoral , Análisis por Conglomerados , Expresión Génica , Regulación de la Expresión Génica , Orden Génico , Productos del Gen tax/genética , Redes Reguladoras de Genes , Vectores Genéticos/genética , Células HEK293 , Humanos , Reproducibilidad de los Resultados , Transducción Genética
3.
J Virol ; 85(23): 12673-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21917984

RESUMEN

The human T-cell lymphotropic virus (HTLV) retrovirus family is composed of the well-known HTLV type 1 (HTLV-1) and HTLV-2 and the most recently discovered HTLV-3 and HTLV-4. Like other retroviruses, HTLV-1 and HTLV-2 gene expression has been thought to be orchestrated through a single transcript. However, recent reports have demonstrated the unique potential of both HTLV-1 and HTLV-2 to produce an antisense transcript. Furthermore, these unexpected and newly identified transcripts lead to the synthesis of viral proteins termed HBZ (HTLV-1 basic leucine zipper) and APH-2 (antisense protein of HTLV-2), respectively. As potential open reading frames are present on the antisense strand of HTLV-3 and HTLV-4, we tested whether in vitro antisense transcription occurred in these viruses and whether these transcripts had a coding potential. Using HTLV-3 and HTLV-4 proviral DNA constructs, antisense transcripts were detected by reverse transcriptase PCR. These transcripts are spliced and polyadenylated and initiate at multiple sites from the 3' long terminal repeat (LTR). The resulting proteins, termed APH-3 and APH-4, are devoid of a typical basic leucine zipper domain but contain basic amino acid-rich regions. Confocal microscopy and Western blotting experiments demonstrated a nucleus-restricted pattern for APH-4, while APH-3 was localized both in the cytoplasm and in the nucleus. Both proteins showed partial colocalization with nucleoli and HBZ-associated structures. Finally, both proteins inhibited Tax1- and Tax3-mediated HTLV-1 and HTLV-3 LTR activation. These results further demonstrate that retroviral antisense transcription is not exclusive to HTLV-1 and HTLV-2 and that APH-3 and APH-4 could impact HTLV-3 and HTLV-4 replication.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/metabolismo , Infecciones por Deltaretrovirus/genética , Deltaretrovirus/genética , Productos del Gen tax , Virus Linfotrópico T Tipo 3 Humano/genética , ARN sin Sentido/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Western Blotting , Células COS , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , ADN Viral/genética , Deltaretrovirus/metabolismo , Infecciones por Deltaretrovirus/metabolismo , Infecciones por Deltaretrovirus/virología , Virus Linfotrópico T Tipo 3 Humano/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Riñón/virología , Plásmidos , Poli A/genética , Regiones Promotoras Genéticas , Empalme del ARN , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares , Secuencias Repetidas Terminales/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA