Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Virol ; 97(10): e0124523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792001

RESUMEN

IMPORTANCE: Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.


Asunto(s)
Aciltransferasas , Retículo Endoplásmico , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza B , Lipoilación , Ácido Palmítico , Replicación Viral , Humanos , Aciltransferasas/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/química , Virus de la Influenza A/metabolismo , Virus de la Influenza B/química , Virus de la Influenza B/crecimiento & desarrollo , Virus de la Influenza B/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Lipoilación/genética , Mutación , Ácido Palmítico/metabolismo
2.
Virology ; 549: 68-76, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32853848

RESUMEN

Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. To understand their adaptation capability, we examined the genetic changes that occurred following 15 serial passages of two influenza B viruses, B/Brisbane/60/2008 and B/Victoria/504/2000, in human epithelial cells. Thirteen distinct amino acid mutations were found in the PB1, PA, hemagglutinin (HA), neuraminidase (NA), and M proteins after serial passage in the human lung epithelial cell line, Calu-3, and normal human bronchial epithelial (NHBE) cells. These changes were associated with significantly decreased viral replication levels. Our results demonstrate that adaptation of influenza B viruses for growth in human airway epithelial cells is partially conferred by selection of HA1, NA, and polymerase mutations that regulate receptor specificity, functional compatibility with the HA protein, and polymerase activity, respectively.


Asunto(s)
Hemaglutininas Virales/genética , Virus de la Influenza B/genética , Mutación , Neuraminidasa/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Animales , Línea Celular , Perros , Células Epiteliales , Regulación Viral de la Expresión Génica , Células HEK293 , Pruebas de Inhibición de Hemaglutinación , Hemaglutininas Virales/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Virus de la Influenza B/crecimiento & desarrollo , Virus de la Influenza B/metabolismo , Células de Riñón Canino Madin Darby , Neuraminidasa/metabolismo , Pase Seriado/métodos , Transducción de Señal , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
3.
Biochem J ; 477(1): 285-303, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31872235

RESUMEN

Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.


Asunto(s)
Aciltransferasas/metabolismo , Gammainfluenzavirus/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Gripe Humana/virología , Células A549 , Acilación , Animales , Perros , Células HeLa , Humanos , Células de Riñón Canino Madin Darby
4.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597759

RESUMEN

Influenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared two seasonal IAVs (A/H1N1 and A/H3N2) and two IBVs (B/Victoria and B/Yamagata lineages) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved to be present in human respiratory epithelium. The IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency than IAV HA0. Accordingly, knockdown of a single protease, TMPRSS2, abrogated spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH values proved similar for IBV and human-adapted IAVs (with one exception being the HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host adaptation during prolonged circulation of this respiratory virus in the human population.IMPORTANCE Influenza epidemics are caused by influenza A and influenza B viruses (IAV and IBV, respectively). IBV causes substantial disease; however, it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We resolve here how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans and may have broader relevance for understanding the biology and evolution of respiratory viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/virología , Pulmón/virología , Replicación Viral/genética , Línea Celular , Células Epiteliales/patología , Células Epiteliales/virología , Regulación de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Concentración de Iones de Hidrógeno , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza B/metabolismo , Virus de la Influenza B/patogenicidad , Gripe Humana/patología , Calicreínas/clasificación , Calicreínas/genética , Calicreínas/metabolismo , Pulmón/patología , Fusión de Membrana , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteolisis , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Serina Proteasas/clasificación , Serina Proteasas/genética , Serina Proteasas/metabolismo , Especificidad de la Especie , Temperatura , Internalización del Virus
5.
Phys Chem Chem Phys ; 21(17): 8820-8826, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30968902

RESUMEN

The tetrameric influenza B M2 channel (BM2), an acid activated proton channel, is important in the influenza virus B lifecycle. A conserved HxxxW motif is responsible for proton conduction and channel gating. In this study, to explore the effects of the serine triad (S9, S12 and S16) on proton conduction, we performed classical molecular dynamics (CMD) simulations and adaptive steered molecular dynamics (ASMD) simulations at different protonation states of the H19 tetrad. The results of the pore radius and the C-terminal tilt angle show that the electrostatic repulsion induced by protonated H19 is the key driving force for opening the BM2 channel. The open states could be stabilized by the hydrogen bonds between S16 and protonated H19. The solvent accessible surface area and water density indicate that the polar hydrophilic environment provided by the serine triad facilitates the formation of a water wire, and then exhibits favourable effects on proton conduction. The mutant research verifies and supports these views. Our work clarifies the effects of the serine triad on proton conduction in the BM2 channel, which would help us deeply understand the proton conduction mechanism in BM2 and provides a new perspective for antiviral drug design against BM2.


Asunto(s)
Virus de la Influenza B/metabolismo , Canales Iónicos/efectos de los fármacos , Simulación de Dinámica Molecular , Serina/química , Proteínas Virales/metabolismo , Membrana Celular/metabolismo , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Gripe Humana/metabolismo , Conformación Proteica , Protones , Electricidad Estática , Propiedades de Superficie , Agua
6.
Sci Rep ; 9(1): 3725, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842530

RESUMEN

Influenza A and B viruses cause seasonal flu epidemics. The M2 protein of influenza B (BM2) is a membrane-embedded tetrameric proton channel that is essential for the viral lifecycle. BM2 is a functional analog of AM2 but shares only 24% sequence identity for the transmembrane (TM) domain. The structure and function of AM2, which is targeted by two antiviral drugs, have been well characterized. In comparison, much less is known about the structure of BM2 and no drug is so far available to inhibit this protein. Here we use solid-state NMR spectroscopy to investigate the conformation of BM2(1-51) in phospholipid bilayers at high pH, which corresponds to the closed state of the channel. Using 2D and 3D correlation NMR experiments, we resolved and assigned the 13C and 15N chemical shifts of 29 residues of the TM domain, which yielded backbone (φ, ψ) torsion angles. Residues 6-28 form a well-ordered α-helix, whereas residues 1-5 and 29-35 display chemical shifts that are indicative of random coil or ß-sheet conformations. The length of the BM2-TM helix resembles that of AM2-TM, despite their markedly different amino acid sequences. In comparison, large 15N chemical shift differences are observed between bilayer-bound BM2 and micelle-bound BM2, indicating that the TM helix conformation and the backbone hydrogen bonding in lipid bilayers differ from the micelle-bound conformation. Moreover, HN chemical shifts of micelle-bound BM2 lack the periodic trend expected for coiled coil helices, which disagree with the presence of a coiled coil structure in micelles. These results establish the basis for determining the full three-dimensional structure of the tetrameric BM2 to elucidate its proton-conduction mechanism.


Asunto(s)
Virus de la Influenza B/metabolismo , Proteínas Virales/química , Enlace de Hidrógeno , Virus de la Influenza B/química , Membrana Dobles de Lípidos/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas de la Matriz Viral/química
7.
J Gen Virol ; 98(9): 2267-2273, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28869005

RESUMEN

NS1 proteins of influenza A and B viruses share limited sequence homology, yet both are potent manipulators of host cell processes, particularly interferon (IFN) induction. Although many cellular partners are reported for A/NS1, only a few (e.g. PKR and ISG15) have been identified for B/NS1. Here, affinity-purification and mass spectrometry were used to expand the known host interactome of B/NS1. We identified 22 human proteins as new putative targets for B/NS1, validating several, including DHX9, ILF3, YBX1 and HNRNPC. Consistent with two RNA-binding domains in B/NS1, many of the identified factors bind RNA and some interact with B/NS1 in an RNA-dependent manner. Functional characterization of several B/NS1 interactors identified SNRNP200 as a potential positive regulator of host IFN responses, while ILF3 exhibited dual roles in both IFN induction and influenza B virus replication. These data provide a resource for future investigations into the mechanisms underpinning host cell modulation by influenza B virus NS1.


Asunto(s)
Virus de la Influenza B/aislamiento & purificación , Gripe Humana/metabolismo , Proteínas no Estructurales Virales/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Humanos , Virus de la Influenza B/genética , Virus de la Influenza B/metabolismo , Gripe Humana/genética , Gripe Humana/virología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Factor Nuclear 90/genética , Proteínas del Factor Nuclear 90/metabolismo , Unión Proteica , Proteínas no Estructurales Virales/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
8.
Structure ; 24(9): 1562-72, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27545620

RESUMEN

Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal domain, which reveal a novel and unexpected basic RNA-binding site that is not present in the NS1A protein. We demonstrate that single-site alanine replacements of basic residues in this site lead to reduced RNA-binding activity, and that recombinant influenza B viruses expressing these mutant NS1B proteins are severely attenuated in replication. This novel RNA-binding site of NS1B is required for optimal influenza B virus replication. Most importantly, this study reveals an unexpected RNA-binding function in the C-terminal domain of NS1B, a novel function that distinguishes influenza B viruses from influenza A viruses.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza B/genética , Mutación , ARN Viral/química , Proteínas de Unión al ARN/química , Proteínas no Estructurales Virales/química , Células A549 , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Expresión Génica , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
9.
PLoS One ; 10(9): e0137802, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26368391

RESUMEN

Influenza nucleoprotein (NP) is a major component of the ribonucleoprotein (vRNP) in influenza virus, which functions for the transcription and replication of viral genome. Compared to the nucleoprotein of influenza A (ANP), the N-terminal region of influenza B nucleoprotein (BNP) is much extended. By virus reconstitution, we found that the first 38 residues are essential for viral growth. We further illustrated the function of BNP by mini-genome reconstitution, fluorescence microscopy, electron microscopy, light scattering and gel shift. Results show that the N terminus is involved in the formation of both higher homo-oligomers of BNP and BNP-RNA complex.


Asunto(s)
Virus de la Influenza B/química , ARN Viral/química , Proteínas del Núcleo Viral/química , Virus de la Influenza A/química , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Proteínas de la Nucleocápside , Estructura Terciaria de Proteína , ARN Viral/metabolismo , Proteínas del Núcleo Viral/metabolismo
10.
Virology ; 485: 104-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26218215

RESUMEN

Co-infection of influenza A and B viruses (IAV and IBV) results in marked decreases in IAV replication. Multiple mechanisms have been proposed for this phenomenon. Recently, we reported that IBV nucleoprotein (BNP) alone can suppress IAV replication and proposed an inhibition model in which BNP binds IAV nucleoprotein (ANP) and disrupts IAV polymerase complexes. Here, using mutagenesis and co-immunoprecipitation, we determined the protein motifs mediating the intertypic ANP-BNP complex and showed that it specifically interferes with ANP׳s interaction with the PB2 subunit of the IAV polymerase but not with the other subunit PB1. We further demonstrated that BNP only suppresses growth of IAVs but not other RNA viruses. However, different IAV strains display varied sensitivity toward the BNP׳s inhibitory effect. Together, our data provide mechanistic insights into intertypic nucleoprotein complex formation and highlight the role of BNP as a potential broad-spectrum anti-IAV agent.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza B/genética , Nucleoproteínas/química , ARN Polimerasa Dependiente del ARN/química , Proteínas del Núcleo Viral/química , Animales , Antibiosis/genética , Coinfección , Perros , Expresión Génica , Células HEK293 , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Células de Riñón Canino Madin Darby , Modelos Moleculares , Mutación , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Replicación Viral
11.
Nucleic Acid Ther ; 23(5): 355-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23971908

RESUMEN

One of the hallmarks of progression of influenza virus replication is the step involving the virus uncoating that occurs in the host cytoplasm. The BM2 ion channel protein of influenza B virus is highly conserved and is essentially required during the uncoating processes of virus, thus an attractive target for designing antiviral drugs. We screened several DNA enzymes (Dzs) containing the 10-23 catalytic motif against the influenza B virus BM2 RNA. Dzs directed against the predicted single-stranded bulge regions showed sequence-specific cleavage activities. The Dz209 not only showed significant intracellular reduction of BM2 gene expression in transient-expression system but also provided considerable protection against influenza B virus challenge in MDCK cells. Our findings suggest that the Dz molecule can be used as selective and effective inhibitor of viral RNA replication, and can be explored further for development of a potent therapeutic agent against influenza B virus infection.


Asunto(s)
Antivirales/metabolismo , ADN Catalítico/metabolismo , Virus de la Influenza B/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas Virales/genética , Animales , Antivirales/síntesis química , Dominio Catalítico , ADN Catalítico/síntesis química , Perros , Virus de la Influenza B/genética , Virus de la Influenza B/crecimiento & desarrollo , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Motivos de Nucleótidos , División del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/química , ARN Viral/genética , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral
12.
Proc Natl Acad Sci U S A ; 109(16): 6247-52, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474359

RESUMEN

Influenza viruses are the cause of yearly epidemics and occasional pandemics that represent a significant challenge to public health. Current control strategies are imperfect and there is an unmet need for new antiviral therapies. Here, we report the identification of small molecule compounds able to effectively and specifically inhibit growth of influenza A and B viruses in cultured cells through targeting an assembly interface of the viral RNA-dependent RNA polymerase. Using an existing crystal structure of the primary protein-protein interface between the PB1 and PA subunits of the influenza A virus polymerase, we conducted an in silico screen to identify potential small molecule inhibitors. Selected compounds were then screened for their ability to inhibit the interaction between PB1 and PA in vitro using an ELISA-based assay and in cells, to inhibit nuclear import of a binary PB1-PA complex as well as transcription by the full viral ribonucleoprotein complex. Two compounds emerged as effective inhibitors with IC(50) values in the low micromolar range and negligible cytotoxicity. Of these, one compound also acted as a potent replication inhibitor of a variety of influenza A virus strains in Madin-Darby canine kidney (MDCK) cells, including H3N2 and H1N1 seasonal and 2009 pandemic strains. Importantly, this included an oseltamivir-resistant isolate. Furthermore, potent inhibition of influenza B viruses but not other RNA or DNA viruses was seen. Overall, these compounds provide a foundation for the development of a new generation of therapeutic agents exhibiting high specificity to influenza A and B viruses.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Farmacorresistencia Viral , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Virus de la Influenza B/genética , Virus de la Influenza B/metabolismo , Concentración 50 Inhibidora , Microscopía Confocal , Modelos Moleculares , Oseltamivir/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/química , Células Vero
13.
J Ethnopharmacol ; 134(3): 614-23, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21232589

RESUMEN

AIMS OF THE STUDY: Ko-Ken Tang (KKT, aka kakkon-to), a conventional Chinese herbal medicine, has been used for the treatment of the common cold, fever and influenza virus infection. However, the underlying mechanism of its activity against influenza virus infection remains elusive. In this study, the antiviral effect and its underlying mechanism was evaluated, including the investigation of anti-influenza virus activity of KKT on MDCK cells and corresponding mechanism related to phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and its consecutive viral RNP nuclear export. MATERIALS AND METHODS: The antiviral activity of non-toxic concentration of KKT was examined against various strains of influenza virus and enterovirus 71 by neutralization assay. PI3K/Akt signaling activated by influenza virus was inspected in A549 cells by western blot. Inhibition of influenza polymerase activity by KKT was measured with plasmid-based reverse genetics using primer extension assay and luciferase reporter assay. Inhibition of viral vRNP nuclear export was demonstrated by laser confocal microscopy and interspecies heterokaryon assay. RESULTS: KKT inhibits influenza virus replication but not entry, and it exhibits a broad spectrum inhibitory activity against human influenza A viruses and enterovirus 71. KKT does not inhibit viral polymerase activity but directly blocks the virus-induced phosphatidylinositol 3-kinase/Akt signaling pathway, which in turns causes retention of viral nucleoprotein in the nucleus, thereby interfering with virus propagation. The inhibition by KKT of the nuclear export of viral protein was further confirmed by heterokaryon assay. CONCLUSIONS: The results obtained in this study give scientific support to KKT for the treatment of influenza virus infection. KKT could be of potential use in the management of seasonal pandemic influenza virus infection in addition to other clinically available drugs.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleoproteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cartilla de ADN , Perros , Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Transporte de Proteínas
14.
Antiviral Res ; 88(2): 227-35, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20826184

RESUMEN

Influenza virus infects the respiratory system of human and animals causing mild to severe illness which could lead to death. Although vaccines are available, there is still a great need for influenza antiviral drugs to reduce disease progression and virus transmission. Currently two classes (M2 channel blockers and neuraminidase inhibitors) of FDA-approved influenza antiviral drugs are available, but there are great concerns of emergence of viral resistance. Therefore, timely development of new antiviral drugs against influenza viruses is crucial. Plant-derived polyphenols have been studied for antioxidant activity, anti-carcinogenic, and cardio- and neuroprotective actions. Recently, some polyphenols, such as resveratrol and epigallocatechin gallate, showed significant anti-influenza activity in vitro and/or in vivo. Therefore we investigated selected polyphenols for their antiviral activity against influenza A and B viruses. Among the polyphenols we tested, isoquercetin inhibited the replication of both influenza A and B viruses at the lowest effective concentration. In a double treatment of isoquercetin and amantadine, synergistic effects were observed on the reduction of viral replication in vitro. The serial passages of virus in the presence of isoquercetin did not lead to the emergence of resistant virus, and the addition of isoquercetin to amantadine or oseltamivir treatment suppressed the emergence of amantadine- or oseltamivir-resistant virus. In a mouse model of influenza virus infection, isoquercetin administered intraperitoneally to mice inoculated with human influenza A virus significantly decreased the virus titers and pathological changes in the lung. Our results suggest that isoquercetin may have the potential to be developed as a therapeutic agent for the treatment of influenza virus infection and for the suppression of resistance in combination therapy with existing drugs.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Quercetina/análogos & derivados , Amantadina/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Farmacorresistencia Viral , Sinergismo Farmacológico , Equisetum , Femenino , Humanos , Hypericum , Virus de la Influenza A/metabolismo , Virus de la Influenza A/fisiología , Virus de la Influenza B/metabolismo , Virus de la Influenza B/fisiología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología , Extractos Vegetales/farmacología , Quercetina/farmacología , Quercetina/uso terapéutico , Células Vero , Replicación Viral/efectos de los fármacos
15.
J Biol Chem ; 285(22): 16704-12, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20363752

RESUMEN

Despite their close phylogenetic relationship, natural intertypic reassortants between influenza A (FluA) and B (FluB) viruses have not been described. Inefficient polymerase assembly of the three polymerase subunits may contribute to this incompatibility, especially because the known protein-protein interaction domains, including the PA-binding domain of PB1, are highly conserved for each virus type. Here we show that substitution of the FluA PA-binding domain (PB1-A(1-25)) with that of FluB (PB1-B(1-25)) is accompanied by reduced polymerase activity and viral growth of FluA. Consistent with these findings, surface plasmon resonance spectroscopy measurements revealed that PA of FluA exhibits impaired affinity to biotinylated PB1-B(1-25) peptides. PA of FluB showed no detectable affinity to biotinylated PB1-A(1-25) peptides. Consequently, FluB PB1 harboring the PA-binding domain of FluA (PB1-AB) failed to assemble with PA and PB2 into an active polymerase complex. To regain functionality, we used a single amino acid substitution (T6Y) known to confer binding to PA of both virus types, which restored polymerase complex formation but surprisingly not polymerase activity for FluB. Taken together, our results demonstrate that the conserved virus type-specific PA-binding domains differ in their affinity to PA and thus might contribute to intertypic exclusion of reassortants between FluA and FluB viruses.


Asunto(s)
Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Perros , Humanos , Cinética , Datos de Secuencia Molecular , Nucleótidos/química , Péptidos/química , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Resonancia por Plasmón de Superficie
16.
J Biol Chem ; 285(11): 7852-6, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20093371

RESUMEN

Influenza B viruses, which cause a highly contagious respiratory disease every year, are restricted to humans, but the basis for this restriction had not been determined. Here we provide one explanation for this restriction: the species specificity exhibited by the NS1 protein of influenza B virus (NS1B protein). This viral protein combats a major host antiviral response by binding the interferon-alpha/beta-induced, ubiquitin-like ISG15 protein and inhibiting its conjugation to an array of proteins. We demonstrate that the NS1B protein exhibits species-specific binding; it binds human and non-human primate ISG15 but not mouse or canine ISG15. In both transfection assays and virus-infected cells, the NS1B protein binds and relocalizes only human and non-human primate ISG15 from the cytoplasm to nuclear speckles. Human and non-human primate ISG15 proteins consist of two ubiquitin-like domains separated by a short hinge linker of five amino acids. Remarkably, this short hinge plays a large role in the species-specific binding by the NS1B protein. The hinge of human and non-human primate ISG15, which has a sequence that differs from that of other mammalian ISG15 proteins, including mouse and canine ISG15, is absolutely required for binding the NS1B protein. Consequently, the ISG15 proteins of humans and non-human primates are the only mammalian ISG15 proteins that would bind NS1B.


Asunto(s)
Citocinas/metabolismo , Virus de la Influenza B/inmunología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Ubiquitinas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Células COS , Núcleo Celular/metabolismo , Núcleo Celular/virología , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virología , Perros , Células HeLa , Humanos , Virus de la Influenza B/metabolismo , Gripe Humana/inmunología , Gripe Humana/metabolismo , Riñón/citología , Ratones , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Péptidos , Unión Proteica/inmunología , Proteínas de Unión al ARN , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
17.
Arch Virol ; 154(10): 1619-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19763781

RESUMEN

Co-expression of the BM2 protein with pH-sensitive HA reduces the conversion of HA to its low-pH conformation during transport to the cell surface in the same way as human M2 proteins. BM2 protein is capable of increasing vesicular pH by as much as 0.4 pH units. Mutation analysis showed that replacement of H19 in BM2 protein by A and L resulted in loss of activity, while M2, with the mutation H37A, remained active, but its severe toxicity was intolerable for cells. Whereas substitution of L or A for W23 abolished detectable activity of the BM2 channel, substitution of L for W41 in the M2 protein resulted in a functional ion channel but with reduced activity. W41 was not essential for functional activity of the M2 protein. Our results show some differences in the nature of the interaction of the histidine and tryptophan in the transmembrane domains of BM2 and M2 ion channels.


Asunto(s)
Virus de la Influenza A/metabolismo , Virus de la Influenza B/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Concentración de Iones de Hidrógeno , Virus de la Influenza A/genética , Virus de la Influenza B/genética , Polimorfismo de Nucleótido Simple , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/fisiología , Proteínas Virales/genética , Proteínas Virales/fisiología , Ensamble de Virus , Red trans-Golgi/metabolismo
18.
Biochemistry ; 48(42): 9949-51, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19780586

RESUMEN

BM2 is a small integral membrane protein from influenza B virus which forms proton-permeable channels. Coarse-grained (CG) molecular dynamics simulations have been used to produce a model of the BM2 channel by self-assembly of a tetrameric bundle of BM2 transmembrane helices in a lipid bilayer. The BM2 channel model is conformationally stable on a 5 mus time scale. This CG model was converted to atomistic resolution to refine interhelix and channel-water interactions. Atomistic molecular dynamics simulations indicate that the BM2 channel is closed when no more than two of the four His19 residues are protonated. Protonating a third His19 side chain initiates a conformational change that opens the channel. In summary, our simulations suggest a common mechanism for BM2 and A/M2, whereby changes in helix packing play a functional role in channel gating.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Virales/química , Simulación por Computador , Virus de la Influenza B/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína
19.
Anal Chem ; 81(9): 3500-6, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19402721

RESUMEN

High resolution, high mass accuracy mass spectra of hemagglutinin and whole virus digests of influenza are shown to be able to be used to type and subtype the major circulating forms of the virus in humans. Conserved residues and peptide segments of the hemagglutinin antigen have been identified across type A and B strains, and for type B strains of the Yamagata 16/88 and Victoria 2/87 lineages. The theoretical masses for the protonated peptide ions for tryptic peptides of conserved sequence were subsequently shown to be unique in mass when compared to in silico generated peptides from all influenza viral protein sequences and those proteins known to contaminate virus preparations. The approach represents a more rapid and direct approach with which to type and subtype the virus that is of critical need to prepare strategies and treatments in the event of a local epidemic or global pandemic.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza B/clasificación , Secuencia de Aminoácidos , Antígenos Virales/química , Antígenos Virales/metabolismo , Secuencia Conservada , Bases de Datos Genéticas , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Virus de la Influenza A/inmunología , Virus de la Influenza A/metabolismo , Virus de la Influenza B/inmunología , Virus de la Influenza B/metabolismo , Péptidos/análisis , Péptidos/química , Péptidos/metabolismo , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Tripsina/metabolismo
20.
RNA ; 14(11): 2394-406, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18824510

RESUMEN

Coupled expression of the M1 and BM2 open-reading frames (ORFs) of influenza B from the dicistronic segment 7 mRNA occurs by a process of termination-dependent reinitiation. The AUG start codon of the BM2 ORF overlaps the stop codon of the upstream M1 ORF in the pentanucleotide UAAUG, and BM2 synthesis is dependent upon translation of the M1 ORF and termination at the stop codon. Here, we have investigated the mRNA sequence requirements for BM2 expression. Termination-reinitiation is dependent upon 45 nucleotide (nt) of RNA immediately upstream of the UAAUG pentanucleotide, which includes an essential stretch complementary to 18S rRNA helix 26. Thus, similar to the caliciviruses, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the M1 stop codon. Consistent with this, repositioning of the M1 stop codon more than 24 nt downstream from the BM2 start codon inhibited BM2 expression. RNA structure probing revealed that the RNA upstream of the UAAUG overlap is not highly structured, but upon encountering the M1 stop codon by the ribosome, a stem-loop may form immediately 5' of the ribosome, with the 18S rRNA complementary region in the apical loop and in close proximity to helix 26. Mutational analysis reveals that the normal requirements for start site selection in BM2 expression are suspended, with little effect of initiation codon context and efficient use of noncanonical initiation codons. This suggests that the full complement of initiation factors is not required for the reinitiation process.


Asunto(s)
Virus de la Influenza B/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Terminación de la Cadena Péptídica Traduccional , Proteínas Virales/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Codón Iniciador/genética , Codón Iniciador/metabolismo , Codón de Terminación/genética , Codón de Terminación/metabolismo , Virus de la Influenza B/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional/genética , Terminación de la Cadena Péptídica Traduccional/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA