Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Angew Chem Int Ed Engl ; 61(4): e202113857, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34825756

RESUMEN

Constrained peptides are promising next-generation therapeutics. We report here a fundamentally new strategy for the facile generation of bicyclic peptides using linear precursor peptides with three cysteine residues and a non-toxic trivalent bismuth(III) salt. Peptide-bismuth bicycles form instantaneously at physiological pH, are stable in aqueous solution for many weeks, and much more resistant to proteolysis than their linear precursors. The strategy allows the in situ generation of bicyclic ligands for biochemical screening assays. We demonstrate this for two screening campaigns targeting the proteases from Zika and West Nile viruses, revealing a new lead compound that displayed inhibition constants of 23 and 150 nM, respectively. Bicyclic peptides are up to 130 times more active and 19 times more proteolytically stable than their linear analogs without bismuth.


Asunto(s)
Bismuto/farmacología , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/farmacología , Inhibidores de Proteasas/farmacología , Bismuto/química , Relación Dosis-Respuesta a Droga , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Conformación Proteica , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
2.
J Med Chem ; 64(5): 2777-2800, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33596380

RESUMEN

Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 130 nM. Their structure-activity relationships are discussed. The ZVpro inhibitors also inhibit homologous proteases of dengue and West Nile viruses, and their inhibitory activities are correlated. The most potent compounds 47 and 103 potently inhibited Zika virus replication in cells with EC68 values of 300-600 nM and in a mouse model of Zika infection. These compounds represent novel pharmacological leads for drug development against Flavivirus infections.


Asunto(s)
Antivirales/uso terapéutico , Pirazinas/uso terapéutico , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/uso terapéutico , Proteínas Virales/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , Regulación Alostérica/efectos de los fármacos , Animales , Antivirales/síntesis química , Línea Celular Tumoral , Virus del Dengue/enzimología , Humanos , Ratones , Estructura Molecular , Pirazinas/síntesis química , Inhibidores de Serina Proteinasa/síntesis química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
3.
Viruses ; 13(2)2021 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572517

RESUMEN

West Nile virus (WNV) nonstructural protein 3 (NS3) harbors the viral triphosphatase and helicase for viral RNA synthesis and, together with NS2B, constitutes the protease responsible for polyprotein processing. NS3 is a soluble protein, but it is localized to specialized compartments at the rough endoplasmic reticulum (RER), where its enzymatic functions are essential for virus replication. However, the mechanistic details behind the recruitment of NS3 from the cytoplasm to the RER have not yet been fully elucidated. In this study, we employed immunofluorescence and biochemical assays to demonstrate that NS3, when expressed individually and when cleaved from the viral polyprotein, is localized exclusively to the cytoplasm. Furthermore, NS3 appeared to be peripherally recruited to the RER and proteolytically active when NS2B was provided in trans. Thus, we provide evidence for a potential additional role for NS2B in not only serving as the cofactor for the NS3 protease, but also in recruiting NS3 from the cytoplasm to the RER for proper enzymatic activity. Results from our study suggest that targeting the interaction between NS2B and NS3 in disrupting the NS3 ER localization may be an attractive avenue for antiviral drug discovery.


Asunto(s)
Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/fisiología , Citoplasma/virología , Retículo Endoplásmico Rugoso/virología , Humanos , Transporte de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética , Virus del Nilo Occidental/enzimología , Virus del Nilo Occidental/genética
4.
ChemMedChem ; 15(15): 1439-1452, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32501637

RESUMEN

A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.


Asunto(s)
Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus del Dengue/enzimología , Relación Dosis-Respuesta a Droga , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
5.
Antiviral Res ; 175: 104731, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32014497

RESUMEN

West Nile virus (WNV) and Dengue virus (DENV) are mosquito-borne pathogenic flaviviruses. The NS2B-NS3 proteases found in these viruses are responsible for polyprotein processing and are therefore considered promising medical targets. Another ortholog of these proteases is found in Zika virus (ZIKV). In this work, we applied a combinatorial chemistry approach - Hybrid Combinatorial Substrate Library (HyCoSuL), to compare the substrate specificity profile at the P4-P1 positions of the NS2B-NS3 proteases found in all three viruses. The obtained data demonstrate that Zika and West Nile virus NS2B-NS3 proteases display highly overlapping substrate specificity in all binding pockets, while the Dengue ortholog has slightly different preferences toward natural and unnatural amino acids at the P2 and P4 positions. We used this information to extract specific peptide sequences recognized by the Dengue NS2B-NS3 protease. Next, we applied this knowledge to design a selective substrate and activity-based probe for the Dengue NS2B-NS3 protease. Our work provides a structural framework for the design of inhibitors, which could be used as a lead structure for drug development efforts.


Asunto(s)
Virus del Dengue/enzimología , Modelos Moleculares , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología , Sitios de Unión , Técnicas Químicas Combinatorias , Virus del Dengue/química , Desarrollo de Medicamentos , Cinética , ARN Helicasas/química , ARN Helicasas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas no Estructurales Virales/química , Virus del Nilo Occidental/química , Virus Zika/química
6.
J Am Chem Soc ; 141(17): 6832-6836, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31017399

RESUMEN

Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.


Asunto(s)
Antivirales/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Infección por el Virus Zika/tratamiento farmacológico , Sitio Alostérico , Aminopiridinas/síntesis química , Aminopiridinas/metabolismo , Aminopiridinas/uso terapéutico , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Cristalografía por Rayos X , Virus del Dengue/enzimología , Descubrimiento de Drogas , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Pirazinas/síntesis química , Pirazinas/metabolismo , Pirazinas/uso terapéutico , Serina Endopeptidasas/química , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
7.
J Med Chem ; 62(5): 2333-2347, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30721061

RESUMEN

Increased frequency of arbovirus outbreaks in the last 10 years represents an important emergence for global health. Climate warming, extensive urbanization of tropical regions, and human migration flows facilitate the expansion of anthropophilic mosquitos and the emerging or re-emerging of new viral infections. Only recently the human adenosinetriphosphatase/RNA helicase X-linked DEAD-box polypeptide 3 (DDX3X) emerged as a novel therapeutic target in the fight against infectious diseases. Herein, starting from our previous studies, a new family of DDX3X inhibitors was designed, synthesized, validated on the target enzyme, and evaluated against the West Nile virus (WNV) infection. Time of addition experiments after virus infection indicated that the compounds exerted their antiviral activities after the entry process, likely at the protein translation step of WNV replication. Finally, the most interesting compounds were then analyzed for their in vitro pharmacokinetic parameters, revealing favorable absorption, distribution, metabolism, and excretion values. The good safety profile together with a good activity against WNV for which no treatments are currently available, make this new class of molecules a good starting point for further in vivo studies.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , ARN Helicasas DEAD-box/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fiebre del Nilo Occidental/tratamiento farmacológico , Células A549 , Animales , Antivirales/farmacocinética , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Humanos , Células Vero , Replicación Viral/efectos de los fármacos , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/enzimología , Virus del Nilo Occidental/fisiología
8.
J Enzyme Inhib Med Chem ; 34(1): 8-14, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30362835

RESUMEN

West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M-1s-1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease.


Asunto(s)
Organofosfonatos/farmacología , Péptidos/farmacología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus del Nilo Occidental/enzimología , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Estructura Molecular , Organofosfonatos/síntesis química , Organofosfonatos/química , Péptidos/síntesis química , Péptidos/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
9.
Virology ; 524: 140-150, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195251

RESUMEN

Flavivirus RNA replication starts at 3'-end, where it folds into a highly conserved stem-loop structure. We attempted to identify the viral non-structural proteins (NSPs) that might specifically interact with the 3'-stemloop (3'SL) through a genetic approach. WNV/DENV2 chimeric recombinants that contain Dengue2 (DENV2) gene(s) in West Nile virus (WNV) backbone were tested for replication competence. Three of seven recombinant viruses, containing the DENV2 NS1, NS2A, or NS4B gene and terminated with a mutated 3'SL (MutC 3'SL), were viable. Of these three, only those bearing the DENV2 NS1 and NS2A substitutions remained infectious when the MutC 3'SL was replaced by the wildtype WNV 3'SL. However, none of the seven chimeric recombinants bearing the DENV2 3'SL were viable. We then investigated the causes for failed replication of WNV/DENV2 chimeric recombinants. Proteolytic cleavage of NS polyproteins was defective by heterologous protease NS2B/3, but was efficient by homologous DENV2 NS2B/3 protease. Whereas, the heterologous polyproteins that contained DENV2 homologous protease were found to produce abnormal vesicles. WNV/DENV2 recombinants expressing the DENV2 homologous protease did not produce infectious virus either. We examined NS protein-protein interaction (PPI) and found that heterologous PPI (hPPI) between WNV and DENV2 NSPs were impaired to various degrees. Insufficient PPIs occurred mainly between heterologous NS2B and NS3; NS2B and NS4A; NS3 and NS5, correlating to those non-viability of substitution mutants. Our results indicate that impaired PPI may decrease protease activity and affect vesicle formation, and is the essential cause for non-viability of the WNV/DENV2 recombinants.


Asunto(s)
Virus del Dengue/fisiología , Poliproteínas/metabolismo , Recombinación Genética , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/fisiología , Quimera , Virus del Dengue/enzimología , Virus del Dengue/genética , Poliproteínas/genética , Mapeo de Interacción de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral , Virus del Nilo Occidental/enzimología , Virus del Nilo Occidental/genética
10.
J Med Chem ; 61(3): 980-988, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29301071

RESUMEN

West Nile virus NS2B/NS3 protease (WNVP) is a viable target for the development of antiviral compounds. To that end, catalytic metallopeptides that incorporate the copper-binding ATCUN motif into either the N- or C-terminus of known WNVP targeting peptides have been developed as new families of peptide-based inhibitors. Each metallopeptide was evaluated based on its inhibitory constant (KI), time-dependent inactivation of the protein, Michaelis-Menten parameters, and the ability to oxidatively modify WNVP. Following catalytic inactivation of WNVP, sequencing by LC-MS/MS demonstrated active site residues Ser135, Thr134, and Thr132, as well as residues in the S2 binding pocket, to be modified by oxidative chemistry. Results from a DNPH-based assay to detect oxidative damage showed the formation of carbonyls in WNVP treated with metallopeptides. These results suggest that the metallopeptides are attenuating WNVP activity by irreversible oxidation of amino acids essential to substrate binding and catalysis.


Asunto(s)
Cobre/química , Níquel/química , Péptidos/química , Péptidos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus del Nilo Occidental/enzimología , Hidrazinas/química , Simulación del Acoplamiento Molecular , Péptidos/metabolismo , Conformación Proteica , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
11.
J Med Chem ; 58(23): 9354-70, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26562070

RESUMEN

The dengue virus (DENV) and West Nile Virus (WNV) NS2B-NS3 proteases are attractive targets for the development of dual-acting therapeutics against these arboviral pathogens. We present the synthesis and extensive biological evaluation of inhibitors that contain benzyl ethers of 4-hydroxyphenylglycine as non-natural peptidic building blocks synthesized via a copper-complex intermediate. A three-step optimization strategy, beginning with fragment growth of the C-terminal 4-hydroxyphenylglycine to the benzyloxy ether, followed by C- and N-terminal optimization, and finally fragment merging generated compounds with in vitro affinities in the low nanomolar range. The most promising derivative reached Ki values of 12 nM at the DENV-2 and 39 nM at the WNV proteases. Several of the newly discovered protease inhibitors yielded a significant reduction of dengue and West Nile virus titers in cell-based assays of virus replication, with an EC50 value of 3.4 µM at DENV-2 and 15.5 µM at WNV for the most active analogue.


Asunto(s)
Antivirales/farmacología , Benzoatos/farmacología , Glicina/análogos & derivados , Péptidos/farmacología , Inhibidores de Proteasas/farmacología , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/enzimología , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Línea Celular , Glicina/química , Glicina/metabolismo , Glicina/farmacología , Humanos , Masculino , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Ratas Sprague-Dawley , Fiebre del Nilo Occidental/tratamiento farmacológico , Fiebre del Nilo Occidental/virología
12.
J Virol ; 89(16): 8632-42, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063422

RESUMEN

UNLABELLED: The molecular mechanisms that define the specificity of flavivirus RNA encapsulation are poorly understood. Virions composed of the structural proteins of one flavivirus and the genomic RNA of a heterologous strain can be assembled and have been developed as live attenuated vaccine candidates for several flaviviruses. In this study, we discovered that not all combinations of flavivirus components are possible. While a West Nile virus (WNV) subgenomic RNA could readily be packaged by structural proteins of the DENV2 strain 16681, production of infectious virions with DENV2 strain New Guinea C (NGC) structural proteins was not possible, despite the very high amino acid identity between these viruses. Mutagenesis studies identified a single residue (position 101) of the DENV capsid (C) protein as the determinant for heterologous virus production. C101 is located at the P1' position of the NS2B/3 protease cleavage site at the carboxy terminus of the C protein. WNV NS2B/3 cleavage of the DENV structural polyprotein was possible when a threonine (Thr101 in strain 16681) but not a serine (Ser101 in strain NGC) occupied the P1' position, a finding not predicted by in vitro protease specificity studies. Critically, both serine and threonine were tolerated at the P1' position of WNV capsid. More extensive mutagenesis revealed the importance of flanking residues within the polyprotein in defining the cleavage specificity of the WNV protease. A more detailed understanding of the context dependence of viral protease specificity may aid the development of new protease inhibitors and provide insight into associated patterns of drug resistance. IMPORTANCE: West Nile virus (WNV) and dengue virus (DENV) are mosquito-borne flaviviruses that cause considerable morbidity and mortality in humans. No specific antiflavivirus therapeutics are available for treatment of infection. Proteolytic processing of the flavivirus polyprotein is an essential step in the replication cycle and is an attractive target for antiviral development. The design of protease inhibitors has been informed by insights into the molecular details of the interactions of proteases and their substrates. In this article, studies of the processing of WNV and DENV capsid proteins by the WNV protease identified an unexpected contribution of the sequence surrounding critical residues within the cleavage site on protease specificity. This demonstration of context-dependent protease cleavage has implications for the design of chimeric flaviviruses, new therapeutics, and the interpretation of flavivirus protease substrate specificity studies.


Asunto(s)
Proteínas de la Cápside/metabolismo , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus/fisiología , Virus del Nilo Occidental/enzimología , Análisis de Varianza , Mutagénesis , Plásmidos/genética , Especificidad de la Especie , Electricidad Estática , Especificidad por Sustrato
13.
Protein Sci ; 24(1): 117-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25352331

RESUMEN

Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2'-O positions of the viral RNA cap by using S-adenosyl-l-methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by-product S-adenosyl-l-homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM-analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.


Asunto(s)
Virus del Dengue/enzimología , Dengue/virología , Metiltransferasas/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/enzimología , Cristalografía por Rayos X , Virus del Dengue/química , Virus del Dengue/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/aislamiento & purificación , Modelos Moleculares , Replegamiento Proteico , S-Adenosilhomocisteína/aislamiento & purificación , S-Adenosilmetionina/aislamiento & purificación , Virus del Nilo Occidental/química , Virus del Nilo Occidental/metabolismo
14.
J Chem Inf Model ; 54(10): 2816-25, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25263519

RESUMEN

We report the discovery of a novel small-molecule inhibitor of the dengue virus (DENV) protease (NS2B-NS3pro) using a newly constructed Web-based portal (DrugDiscovery@TACC) for structure-based virtual screening. Our drug discovery portal, an extension of virtual screening studies performed using IBM's World Community Grid, facilitated access to supercomputer resources managed by the Texas Advanced Computing Center (TACC) and enabled druglike commercially available small-molecule libraries to be rapidly screened against several high-resolution DENV NS2B-NS3pro crystallographic structures. Detailed analysis of virtual screening docking scores and hydrogen-bonding interactions between each docked ligand and the NS2B-NS3pro Ser135 side chain were used to select molecules for experimental validation. Compounds were ordered from established chemical companies, and compounds with established aqueous solubility were tested for their ability to inhibit DENV NS2B-NS3pro cleavage of a model substrate in kinetic studies. As a proof-of-concept, we validated a small-molecule dihydronaphthalenone hit as a single-digit-micromolar mixed noncompetitive inhibitor of the DENV protease. Since the dihydronaphthalenone was predicted to interact with NS2B-NS3pro residues that are largely conserved between DENV and the related West Nile virus (WNV), we tested this inhibitor against WNV NS2B-NS3pro and observed a similar mixed noncompetitive inhibition mechanism. However, the inhibition constants were ∼10-fold larger against the WNV protease relative to the DENV protease. This novel validated lead had no chemical features or pharmacophores associated with adverse toxicity, carcinogenicity, or mutagenicity risks and thus is attractive for additional characterization and optimization.


Asunto(s)
Antivirales/química , Virus del Dengue/química , Inhibidores Enzimáticos/química , Naftalenos/química , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Virus del Dengue/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Ácido Nucleico , Serina Endopeptidasas/genética , Especificidad de la Especie , Termodinámica , Interfaz Usuario-Computador , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Virus del Nilo Occidental/química , Virus del Nilo Occidental/enzimología
15.
Peptides ; 52: 49-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24333681

RESUMEN

The Murray Valley encephalitis virus (MVEV) and the West Nile virus (WNV) are mosquito-borne single-stranded RNA Flaviviruses responsible for many cases of viral encephalitis and deaths worldwide. The former is endemic in north Australia and Papua New Guinea while the latter has spread to different parts of the world and was responsible for a recent North American outbreak in 2012, resulting in 243 fatalities. There is currently no approved vaccines or drugs against MVEV and WNV viral infections. A plausible drug target is the viral non-structural NS2B/NS3 protease due to its role in viral replication. This trypsin-like serine protease recognizes and cleaves viral polyproteins at the C-terminal end of an arginine residue, opening an avenue for the development of peptide-based antivirals. This communication compares the P2 and P3 residue preferences of the MVEV and WNV NS2B/NS3 proteases using a series of C-terminal agmatine dipeptides. Our results revealed that both viral enzymes were highly specific toward lysines at the P2 and P3 positions, suggesting that a peptidomimetic viral protease inhibitor developed against one virus should also be active against the other.


Asunto(s)
Agmatina/química , Dipéptidos/química , Virus de la Encefalitis del Valle Murray/enzimología , Serina Endopeptidasas/química , Inhibidores de Serina Proteinasa/química , Proteínas no Estructurales Virales , Virus del Nilo Occidental/enzimología , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química
16.
PLoS One ; 8(10): e76900, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130807

RESUMEN

The methyltransferase enzyme (MTase), which catalyzes the transfer of a methyl group from S-adenosyl-methionine (AdoMet) to viral RNA, and generates S-adenosyl-homocysteine (AdoHcy) as a by-product, is essential for the life cycle of many significant human pathogen flaviviruses. Here we investigated inhibition of the flavivirus MTase by several AdoHcy-derivatives. Unexpectedly we found that AdoHcy itself barely inhibits the flavivirus MTase activities, even at high concentrations. AdoHcy was also shown to not inhibit virus growth in cell-culture. Binding studies confirmed that AdoHcy has a much lower binding affinity for the MTase than either the AdoMet co-factor, or the natural AdoMet analog inhibitor sinefungin (SIN). While AdoMet is a positively charged molecule, SIN is similar to AdoHcy in being uncharged, and only has an additional amine group that can make extra electrostatic contacts with the MTase. Molecular Mechanics Poisson-Boltzmann Sovation Area analysis on AdoHcy and SIN binding to the MTase suggests that the stronger binding of SIN may not be directly due to interactions of this amine group, but due to distributed differences in SIN binding resulting from its presence. The results suggest that better MTase inhibitors could be designed by using SIN as a scaffold rather than AdoHcy.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Flavivirus/enzimología , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilhomocisteína/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Línea Celular , Inhibidores Enzimáticos/efectos adversos , Flavivirus/efectos de los fármacos , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , S-Adenosilhomocisteína/efectos adversos , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/enzimología
17.
Biochemistry ; 52(39): 6856-65, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24015950

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection can cause severe neurological disease and fatality in humans. Efforts are ongoing to develop antiviral drugs that inhibit the WNV protease, a viral enzyme required for polyprotein processing. Unfortunately, little is known about the solution structure of recombinant WNV protease (NS2B-NS3pro) used for antiviral drug discovery and development, although X-ray crystal structures and nuclear magnetic resonance (NMR) studies have provided valuable insights into the interactions between NS2B-NS3pro and peptide-based inhibitors. We completed small-angle X-ray scattering and Fourier transform infrared spectroscopy experiments to determine the solution structure and dynamics of WNV NS2B-NS3pro in the absence of a bound substrate or inhibitor. Importantly, these solution studies suggested that all or most of the NS2B cofactor was highly flexible and formed an ensemble of structures, in contrast to the NS2B tertiary structures observed in crystallographic and NMR studies. The secondary structure of NS2B-NS3pro in solution had high ß-content, similar to the secondary structure observed in crystallographic studies. This work provided evidence of the intrinsic flexibility and conformational heterogeneity of the NS2B chain of the WNV protease in the absence of substratelike ligands, which should be considered during antiviral drug discovery and development efforts.


Asunto(s)
Proteínas no Estructurales Virales/química , Virus del Nilo Occidental/enzimología , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Docilidad , ARN Helicasas/química , Proteínas Recombinantes/química , Dispersión del Ángulo Pequeño , Serina Endopeptidasas/química , Soluciones , Difracción de Rayos X
18.
Anal Biochem ; 435(1): 44-6, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23291011

RESUMEN

Affinity tags are typically used to facilitate membrane protein purification. A protease needs to remain active in the presence of detergent to remove a fusion tag from a recombinant membrane protein. Our results show that the West Nile virus (WNV) protease activity was not affected while in the presence of a wide range of detergents. In a detergent solution, the WNV protease can remove the fusion tag from a recombinant protein containing KCNE3 and a WNV protease site. Therefore, the WNV protease may be useful as an alternative enzyme to remove affinity tags in protein purifications.


Asunto(s)
Cromatografía de Afinidad/métodos , Detergentes/metabolismo , Péptido Hidrolasas/metabolismo , Virus del Nilo Occidental/enzimología , Secuencia de Aminoácidos , Escherichia coli/genética , Humanos , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/aislamiento & purificación , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Soluciones
19.
Antiviral Res ; 97(3): 232-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23267828

RESUMEN

The flavivirus methyltransferase (MTase) sequentially methylates the N-7 and 2'-O positions of the viral RNA cap (GpppA-RNA→m(7)GpppA-RNA→m(7)GpppAm-RNA), using S-adenosyl-l-methionine (SAM) as a methyl donor. We report here the synthesis and biological evaluation of a series of novel nucleoside analogs. Two of these compounds can effectively and competitively inhibit the WNV MTase with IC50 values in micromolar range and, more importantly, do not inhibit human MTase. The compounds can also suppress the WNV replication in cell culture.


Asunto(s)
Metiltransferasas/antagonistas & inhibidores , Nucleósidos/farmacología , Proteínas Virales/antagonistas & inhibidores , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/enzimología , Regulación hacia Abajo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Nucleósidos/síntesis química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología
20.
PLoS Pathog ; 8(4): e1002642, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496660

RESUMEN

RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7)GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro.


Asunto(s)
Adenosina/metabolismo , Virus del Dengue/enzimología , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/enzimología , ARNt Metiltransferasas/metabolismo , Adenosina/genética , Animales , Línea Celular , Virus del Dengue/genética , Humanos , Insectos , Metilación , ARN Viral/genética , Proteínas no Estructurales Virales/genética , Virión/enzimología , Virión/genética , Virus del Nilo Occidental/genética , ARNt Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA