RESUMO
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.
Assuntos
Separação Celular , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/sangue , Separação Celular/métodos , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentaçãoRESUMO
We introduce a digital microfluidics (DMF) platform specifically designed to perform a loop-mediated isothermal amplification (LAMP) of DNA and applied it to a real-time amplification to monitor a cancer biomarker, c-Myc (associated to 40% of all human tumors), using fluorescence microscopy. We demonstrate the full manipulation of the sample and reagents on the DMF platform, resulting in the successful amplification of 90 pg of the target DNA (0.5 ng/µL) in less than one hour. Furthermore, we test the efficiency of an innovative mixing strategy in DMF by employing two mixing methodologies onto the DMF droplets-low frequency AC (alternating current) actuation as well as back-and-forth droplet motion-which allows for improved fluorescence readouts. Fluorophore bleaching effects are minimized through on-chip sample partitioning by DMF processes and sequential droplet irradiation. Finally, LAMP reactions require only 2 µL volume droplets, which represents a 10-fold volume reduction in comparison to benchtop LAMP.
Assuntos
Microfluídica , Neoplasias , Biomarcadores Tumorais , DNA , Corantes Fluorescentes , Humanos , Microfluídica/métodos , Neoplasias/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Microfluidic (MF) advancements have been leveraged toward the development of state-of-the-art platforms for molecular diagnostics, where isothermal amplification schemes allow for further simplification of DNA detection and quantification protocols. The MF integration with loop-mediated isothermal amplification (LAMP) is today the focus of a new generation of chip-based devices for molecular detection, aiming at fast and automated nucleic acid analysis. Here, we combined MF with droplet digital LAMP (ddLAMP) on an all-in-one device that allows for droplet generation, target amplification, and absolute quantification. This multilayer 3D chip was developed in less than 30 minutes by using a low-cost and extremely adaptable production process that exploits direct laser writing technology in "Shrinky-dinks" polystyrene sheets. ddLAMP and target quantification were performed directly on-chip, showing a high correlation between target concentration and positive droplet score. We validated this integrated chip via the amplification of targets ranging from five to 500,000 copies/reaction. Furthermore, on-chip amplification was performed in a 10 µL volume, attaining a limit of detection of five copies/µL under 60 min. This technology was applied to quantify a cancer biomarker, c-MYC, but it can be further extended to any other disease biomarker.
Assuntos
Biomarcadores Tumorais/isolamento & purificação , Técnicas Biossensoriais , DNA de Neoplasias/isolamento & purificação , Neoplasias/diagnóstico , Biomarcadores Tumorais/genética , DNA de Neoplasias/genética , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Microfluídica/métodos , Técnicas de Diagnóstico Molecular/métodos , Neoplasias/genética , Neoplasias/patologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Patologia Molecular/métodosRESUMO
Breast cancer accounts for 11.6% of all cancer cases in both genders. Even though several diagnostic techniques have been developed, the mostly used are invasive, complex, time-consuming, and cannot guarantee an early diagnosis, significantly constraining the tumor treatment success rate. Exosomes are extracellular vesicles that carry biomolecules from tissues to the peripheral circulation, representing an emerging noninvasive source of markers for early cancer diagnosis. Current techniques for exosomes analysis are frequently complex, time-consuming, and expensive. Raman spectroscopy interest has risen lately, because of its nondestructive analysis and little to no sample preparation, while having very low analyte concentration/volume, because of surface enhancement signal (SERS) possibility. However, active SERS substrates are needed, and commercially available substrates come with a high cost and low shelf life. In this work, composites of commercial nata de coco to produce bacterial nanocellulose and in-situ-synthesized silver nanoparticles are tested as SERS substrates, with a low cost and green approach. Enhancement factors from 104 to 105 were obtained, detecting Rhodamine 6G (R6G) concentrations as low as 10-11 M. Exosome samples coming from MCF-10A (nontumorigenic breast epithelium) and MDA-MB-231 (breast cancer) cell cultures were tested on the synthesized substrates, and the obtained Raman spectra were subjected to statistical principal component analysis (PCA). Combining PCA with Raman intravariability and intervariability in exosomal samples, data grouping with 95% confidence was possible, serving as a low-cost, green, and label-free diagnosis method, with promising applicability in clinical settings.
Assuntos
Técnicas Biossensoriais , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas , Exossomos/química , Nanotecnologia , Feminino , Humanos , Células Tumorais CultivadasRESUMO
Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Técnicas Analíticas Microfluídicas/instrumentação , RNA/análise , Detecção Precoce de Câncer , Ouro , Humanos , Células K562 , Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas , Fibras Ópticas , Sistemas Automatizados de Assistência Junto ao Leito , Razão Sinal-Ruído , Células THP-1RESUMO
Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.