Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 17(1): 1-382, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33634751

RESUMO

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.


Assuntos
Autofagia , Animais , Autofagossomos , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Bioensaio/normas , Biomarcadores , Humanos , Lisossomos
2.
Target Oncol ; 9(1): 25-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23430344

RESUMO

The ability to modulate balance between cell survival and death is recognized for its great therapeutic potential. Therefore, research continues to focus on elucidation of cell machinery and signaling pathways that control cell proliferation and apoptosis. Conventional chemotherapeutic agents often have a cytostatic effect over tumor cells. New natural or synthetic chemotherapeutic agents have a wider spectrum of interesting antitumor activities that merit in-depth studies. In the present work, we aimed at characterizing the molecular mechanism leading to induction of cell death upon treatment of the lymphoblastoid cell line PL104 with caffeic acid phenylethyl ester (CAPE), MG132 and two conventional chemotherapeutic agents, doxorubicine (DOX) and vincristine (VCR). Our results showed several apoptotic hallmarks such as phosphatidylserine (PS) exposure on the outer leaflet of the cell membrane, nuclear fragmentation, and increase sub-G1 DNA content after all treatments. In addition, all four drugs downregulated survivin expression. CAPE and both chemotherapeutic agents reduced Bcl-2, while only CAPE and MG132 significantly increased Bax level. CAPE and VCR treatment induced the collapse of mitochondrial membrane potential (∆ψm). All compounds induced cytochrome c release from mitochondrial compartment to cytosol. However, only MG132 caused the translocation of Smac/DIABLO. Except for VCR treatment, all other drugs increased reactive oxygen species (ROS) production level. All treatments induced activation of caspases 3/7, but only CAPE and MG132 led to the activation of caspase 9. In conclusion, our results indicate that CAPE and MG132 treatment of PL104 cells induced apoptosis through the mitochondrial intrinsic pathway, whereas the apoptotic mechanism induced by DOX and VCR may proceed through the extrinsic pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Leucemia/patologia , Leupeptinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Adolescente , Adulto , Ácidos Cafeicos/uso terapêutico , Criança , Pré-Escolar , Drogas em Investigação/farmacologia , Feminino , Humanos , Leucemia/tratamento farmacológico , Leupeptinas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Células Tumorais Cultivadas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA