Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37627601

RESUMO

Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.

2.
Mol Nutr Food Res ; 66(21): e2100990, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35279936

RESUMO

Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.


Assuntos
Doenças Cardiovasculares , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Doenças Cardiovasculares/prevenção & controle , Fenóis/farmacologia , Inflamação
3.
Nutrients ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215423

RESUMO

Major susceptibility to alterations in liver function (e.g., hepatic steatosis) in a prone environment due to circadian misalignments represents a common consequence of recent sociobiological behavior (i.e., food excess and sleep deprivation). Natural compounds and, more concisely, polyphenols have been shown as an interesting tool for fighting against metabolic syndrome and related consequences. Furthermore, mitochondria have been identified as an important target for mediation of the health effects of these compounds. Additionally, mitochondrial function and dynamics are strongly regulated in a circadian way. Thus, we wondered whether some of the beneficial effects of grape-seed procyanidin extract (GSPE) on metabolic syndrome could be mediated by a circadian modulation of mitochondrial homeostasis. For this purpose, rats were subjected to "standard", "cafeteria" and "cafeteria diet + GSPE" treatments (n = 4/group) for 9 weeks (the last 4 weeks, GSPE/vehicle) of treatment, administering the extract/vehicle at diurnal or nocturnal times (ZT0 or ZT12). For circadian assessment, one hour after turning the light on (ZT1), animals were sacrificed every 6 h (ZT1, ZT7, ZT13 and ZT19). Interestingly, GSPE was able to restore the rhythm on clock hepatic genes (Bmal1, Per2, Cry1, Rorα), as this correction was more evident in nocturnal treatment. Additionally, during nocturnal treatment, an increase in hepatic fusion genes and a decrease in fission genes were observed. Regarding mitochondrial complex activity, there was a strong effect of cafeteria diet at nearly all ZTs, and GSPE was able to restore activity at discrete ZTs, mainly in the diurnal treatment (ZT0). Furthermore, a differential behavior was observed in tricarboxylic acid (TCA) metabolites between GSPE diurnal and nocturnal administration times. Therefore, GSPE may serve as a nutritional preventive strategy in the recovery of hepatic-related metabolic disease by modulating mitochondrial dynamics, which is concomitant to the restoration of the hepatic circadian machinery.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Vitis , Animais , Dieta , Extrato de Sementes de Uva/farmacologia , Fígado/metabolismo , Dinâmica Mitocondrial , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Ratos , Ratos Wistar
4.
Mar Drugs ; 19(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677429

RESUMO

Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and ß-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and ß-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.


Assuntos
Anti-Inflamatórios/química , Antineoplásicos/química , Carotenoides/química , Microalgas , Animais , Organismos Aquáticos
5.
Biomolecules ; 11(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530569

RESUMO

Ulcerative colitis (UC), one of the two main types of inflammatory bowel disease, has no effective treatment. Rosmarinic acid (RA) is a polyphenol that, when administered orally, is metabolised in the small intestine, compromising its beneficial effects. We used chitosan/nutriose-coated niosomes loaded with RA to protect RA from gastric degradation and target the colon and evaluated their effect on acute colitis induced by 4% dextran sodium sulphate (DSS) for seven days in mice. RA-loaded nanovesicles (5, 10 and 20 mg/kg) or free RA (20 mg/kg) were orally administered from three days prior to colitis induction and during days 1, 3, 5 and 7 of DSS administration. RA-loaded nanovesicles improved body weight loss and disease activity index as well as increased mucus production and decreased myeloperoxidase activity and TNF-α production. Moreover, RA-loaded nanovesicles downregulated protein expression of inflammasome components such as NLR family pyrin domain-containing 3 (NLRP3), adaptor protein (ASC) and caspase-1, and the consequent reduction of IL-1ß levels. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expression increased after the RA-loaded nanovesicles treatment However, these mechanistic changes were not detected with the RA-free treatment. Our findings suggest that the use of chitosan/nutriose-coated niosomes to increase RA local bioavailability could be a promising nutraceutical strategy for oral colon-targeted UC therapy.


Assuntos
Cinamatos/química , Colite/metabolismo , Depsídeos/química , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Animais , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Técnicas In Vitro , Inflamação , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Ácido Rosmarínico
6.
Nutrients ; 12(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321802

RESUMO

Metabolic surgery modulates the enterohormone profile, which leads, among other effects, to changes in food intake. Bitter taste receptors (TAS2Rs) have been identified in the gastrointestinal tract and specific stimulation of these has been linked to the control of ghrelin secretion. We hypothesize that optimal stimulation of TAS2Rs could help to modulate enteroendocrine secretions and thus regulate food intake. To determine this, we have assayed the response to specific agonists for hTAS2R5, hTAS2R14 and hTAS2R39 on enteroendocrine secretions from intestinal segments and food intake in rats. We found that hTAS2R5 agonists stimulate glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK), and reduce food intake. hTAS2R14 agonists induce GLP1, while hTASR39 agonists tend to increase peptide YY (PYY) but fail to reduce food intake. The effect of simultaneously activating several receptors is heterogeneous depending on the relative affinity of the agonists for each receptor. Although detailed mechanisms are not clear, bitter compounds can stimulate differentially enteroendocrine secretions that modulate food intake in rats.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Hormônios Gastrointestinais/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Secreções Corporais/efeitos dos fármacos , Colecistocinina/metabolismo , Trato Gastrointestinal/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo YY/metabolismo , Ratos , Paladar/fisiologia
7.
Nutrients ; 11(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671606

RESUMO

Biological rhythms can influence the activity of bioactive compounds, and at the same time, the intake of these compounds can modulate biological rhythms. In this context, chrononutrition has appeared as a research field centered on the study of the interactions among biological rhythms, nutrition, and metabolism. This review summarizes the role of phenolic compounds in the modulation of biological rhythms, focusing on their effects in the treatment or prevention of chronic diseases. Heterotrophs are able to sense chemical cues mediated by phytochemicals such as phenolic compounds, promoting their adaptation to environmental conditions. This is called xenohormesis. Hence, the consumption of fruits and vegetables rich in phenolic compounds exerts several health benefits, mainly attributed to the product of their metabolism. However, the profile of phenolic compounds present in plants differs among species and is highly variable depending on agricultural and technological factors. In this sense, the seasonal consumption of polyphenol-rich fruits could induce important changes in the regulation of physiology and metabolism due to the particular phenolic profile that the fruits contain. This fact highlights the need for studies that evaluate the impact of these specific phenolic profiles on health to establish more accurate dietary recommendations.


Assuntos
Ritmo Circadiano , Polifenóis/administração & dosagem , Comportamento Alimentar , Análise de Alimentos , Humanos , Estações do Ano
8.
Mar Drugs ; 17(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374828

RESUMO

Excessive exposure to ultraviolet (UV) radiation is the main risk factor to develop skin pathologies or cancer because it encourages oxidative condition and skin inflammation. In this sense, strategies for its prevention are currently being evaluated. Natural products such as carotenoids or polyphenols, which are abundant in the marine environment, have been used in the prevention of oxidative stress due to their demonstrated antioxidant activities. Nevertheless, the anti-inflammatory activity and its implication in photo-prevention have not been extensively studied. Thus, we aimed to evaluate the combination of fucoxanthin (FX) and rosmarinic acid (RA) on cell viability, apoptosis induction, inflammasome regulation, and anti-oxidative response activation in UVB-irradiated HaCaT keratinocytes. We demonstrated for the first time that the combination of FX and RA (5 µM RA plus 5 µM FX, designated as M2) improved antioxidant and anti-inflammatory profiles in comparison to compounds assayed individually, by reducing UVB-induced apoptosis and the consequent ROS production. Furthermore, the M2 combination modulated the inflammatory response through down-regulation of inflammasome components such as NLRP3, ASC, and Caspase-1, and the interleukin (IL)-1ß production. In addition, Nrf2 and HO-1 antioxidant genes expression increased in UVB-exposed HaCaT cells pre-treated with M2. These results suggest that this combination of natural products exerts photo-protective effects by down-regulating NRLP3-inflammasome and increasing Nrf2 signalling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Xantofilas/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Sinergismo Farmacológico , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Pele/citologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Ácido Rosmarínico
9.
Mar Drugs ; 16(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308980

RESUMO

Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.


Assuntos
Eritema/tratamento farmacológico , Hiperplasia/tratamento farmacológico , Pomadas/farmacologia , Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Xantofilas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Eritema/metabolismo , Feminino , Humanos , Hiperplasia/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Pelados , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Pharmacol Res ; 128: 220-230, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29129670

RESUMO

Oxylipins (OXLs) are bioactive molecules generated by the oxidation of fatty acids that promote the resolution of acute inflammation and prevent chronic inflammatory processes through molecular mechanisms that are not well known. We have previously reported the anti-inflammatory activity of microalgae-derived OXLs and OXL-containing biomass in two inflammatory bowel disease (IBD) models: 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis and TNBS-induced recurrent colitis. In this study, we examined the in vitro anti-inflammatory mechanism of action of the most abundant OXLs isolated from Chlamydomonas debaryana (13S-HOTE and 13S-HODE) and Nannochloropsis gaditana (15S-HEPE). These OXLs decreased IL-1ß and IL-6 pro-inflammatory cytokines production as well as iNOS and COX-2 expression levels in THP-1 macrophages. In addition, OXLs decreased IL-8 production in HT-29 colon cells, the major chemokine produced by these cells. The interaction of OXLs with NFκB and PPAR-γ signaling pathways was studied by confocal microscopy. In THP-1 macrophages and HT-29 colon cells, stimulated by LPS and TNFα respectively, a pre-treatment with 13S-HOTE, 13S-HODE and 15S-HEPE (100µM) resulted in a lower nuclear presence of NFκB in both cell lines. The study of the subcellular localization of PPAR-γ showed that the treatment of THP-1 and HT-29 cells with these OXLs caused the migration of PPAR-γ into the nucleus. Colocalization analysis of both transcription factors in LPS-stimulated THP-1 macrophages showed that the pre-treatment with 13S-HOTE, 13S-HODE or 15S-HEPE lowered nuclear colocalization similar to control value, and increased cytosolic localization above control level. These results indicate that these OXLs could act as agonist of PPAR-γ and consequently inhibit NFκB signaling pathway activation, thus lowering the production of inflammatory markers, highlighting the therapeutic potential of these OXLs in inflammatory diseases such as IBD.


Assuntos
Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Oxilipinas/farmacologia , PPAR gama/metabolismo , Linhagem Celular Tumoral , Clorofíceas , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Microalgas , Estramenópilas
11.
Int Immunopharmacol ; 35: 248-256, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27085036

RESUMO

BACKGROUND: Interleukin-10-deficient (IL-10 (-/-)) mice spontaneously develop chronic colitis and adenocarcinoma through the dysplasia sequence. Autophagy malfunction is associated to inflammatory bowel disease (IBD) and colorectal cancer (CRC) pathogenesis. Autophagy is regulated by silent information regulator-1 (SIRT1), a NAD+-dependent histone deacetylase. Our aim was to investigate the expression changes of SIRT1-AMPK-autophagy pathway in the progression from chronic colitis to CRC. METHODS: We studied C57BL/6-IL-10-deficient mice between 6 and 18weeks of age. Macroscopic and histological analysis, and characterization of inflammatory and tumor biomarkers were performed. RESULTS: IL-10-deficient mice developed colitis from the age of 6weeks onward. The severity of inflammation and dysplasia, and the proliferative activity increased gradually with age. IL-10 (-/-) mice were characterized by improved levels of TNF-α and decreased expression of SIRT1. Moreover, our findings show an increase in p-AMPK expression and an activation of the autophagy in IL-10 (-/-) mice from all stages, evidenced by the accumulation of LC3-II protein, the increase in Beclin 1 expression and the reduction in Bcl-2 levels. CONCLUSIONS: SIRT1-AMPK-autophagy pathway may be involved in the maintenance of chronic inflammation and dysplasia development in the IL-10-deficient mice model. Modulation of this pathway could be a novel strategy for IBD and CRC treatment.


Assuntos
Autofagia , Colite/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/genética , Carcinogênese , Doença Crônica , Colite/genética , Colo/metabolismo , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias , Transdução de Sinais , Sirtuína 1/genética
12.
Toxicol Appl Pharmacol ; 300: 1-12, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016270

RESUMO

Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10µM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Colite/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Pironas/farmacologia , Animais , Caspases/biossíntese , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/patologia , Neoplasias do Colo/patologia , Regulação para Baixo , Células HT29 , Humanos , Interleucina-10/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Peroxidase/biossíntese , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Ácido Trinitrobenzenossulfônico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
13.
Nat Prod Commun ; 11(12): 1871-1875, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30508355

RESUMO

Oxylipins are metabolites derived from lipid peroxidation. The plant oxylipin methyl jasmonate (MJ) shows cytotoxic activity against cancer cell lines of various origins, with ATP-depletion being one of the mechanisms responsible for this effect. The cytotoxic activity of oxylipins (OXLs) isolated from the microalgae Chlamydomonas debaryana (13-HOTE) and Nannochloropsis gaditana (15-HEPE) was higher against UACC-62 (melanoma) than towards HT-29 (colon adenocarcinoma) cells. OXLs lowered the ATP levels of HT-29 and UACC-62 cells, but the effect was higher on the second cell line, which had higher basal ATP. This result proves a link between the cytotoxicity and the capability of these compounds to deplete ATP. In addition, the combination of 13-HOTE with the anticancer drug 5-fluorouracil (5-FU) induced a synergistic toxicity against HT-29 cells. These results highlight the therapeutic potential of oxylipins derived from microalgae.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Chlamydomonas/química , Microalgas/química , Oxilipinas/farmacologia , Estramenópilas/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fluoruracila/farmacologia , Humanos , Oxilipinas/isolamento & purificação
14.
Mar Drugs ; 13(10): 6152-209, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26437418

RESUMO

The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.


Assuntos
Neoplasias do Colo/prevenção & controle , Microalgas/química , Neoplasias Cutâneas/prevenção & controle , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioprevenção/métodos , Neoplasias do Colo/patologia , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Neoplasias Cutâneas/patologia
15.
Inflamm Bowel Dis ; 21(5): 1027-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25793324

RESUMO

BACKGROUND: Colorectal cancer is the most severe complication in inflammatory bowel disease. This study aimed to investigate the effects of the probiotic VSL#3 when administered as either preventive or concurrent treatment in the progression from chronic colitis to colon cancer. METHODS: Mice were exposed to 5, 10, and 15 cycles of dextran sulfate sodium (DSS); each cycle consisted of 0.7% DSS for 1 week followed by distilled water for 10 days. VSL#3 was administered either from 2 weeks before the colitis induction or from the first day of the colitis until being killed. After each period, macroscopic and histological studies, as well as analysis of inflammatory and tumor biomarkers, were performed. RESULTS: Prophylactic or concurrent VSL#3 administration attenuated the disease activity index score and colon inflammation after 5, 10, and 15 cycles of DSS, as well as reduced the histological alterations and the incidence of colonic dysplastic lesions at the 3 periods studied. None of the animals receiving VSL#3 as a concurrent treatment developed carcinoma, which is in contrast to 5% and 20% of the mice following preventive VSL#3 administration, developing carcinoma at the 10th and the 15th cycles of DSS, respectively. In addition, the probiotic reduced the proliferating cell nuclear antigen labeling index, tumor necrosis factor alpha, interleukin-1ß, interleukin-6 production, cyclooxygenase-2 expression, and increased interleukin-10 levels in colon tissue at the 3 periods assayed. CONCLUSIONS: VSL#3 administration reduced chronic inflammation and prevented or delayed the development of dysplasia and carcinoma in a mouse model of chronic colitis-associated cancer.


Assuntos
Adenocarcinoma/prevenção & controle , Colite Ulcerativa/complicações , Regulação da Expressão Gênica/efeitos dos fármacos , Probióticos/uso terapêutico , Adenocarcinoma/etiologia , Adenocarcinoma/metabolismo , Animais , Western Blotting , Células Cultivadas , Doença Crônica , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Técnicas Imunoenzimáticas , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Br J Nutr ; 112(7): 1055-64, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25192306

RESUMO

Inflammatory bowel diseases (IBD) are characterised by chronic uncontrolled inflammation of intestinal mucosa. Diet and nutritional factors have emerged as possible interventions for IBD. Microalgae are rich sources of n-3 PUFA and derived oxylipins. Oxylipins are lipid mediators involved in the resolution of many inflammatory disorders. The aim of the present study was to investigate the effects of the oxylipin-containing biomass of the microalga Chlamydomonas debaryana and its major oxylipin constituent, (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid ((13S)-HOTE), on acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Lyophilised microalgal biomass and (13S)-HOTE were administered by oral route 48, 24 and 1 h before the induction of colitis and 24 h later, and the rats were killed after 48 h. The treatment with the lyophilised microalga and (13S)-HOTE improved body-weight loss and colon shortening, as well as attenuated the extent of colonic damage and increased mucus production. Cellular neutrophil infiltration, with the subsequent increase in myeloperoxidase levels induced by TNBS, were also reduced after the administration of the lyophilised microalga or (13S)-HOTE. The anti-inflammatory effects of these treatments were confirmed by the inhibition of colonic TNF-α production. Moreover, lyophilised microalga or (13S)-HOTE down-regulated cyclo-oxygenase-2 and inducible nitric oxide synthase expression. The present study was the first to show the prophylactic effects of a lyophilised biomass sample of the microalga C. debaryana and the oxylipin (13S)-HOTE on TNBS-induced acute colitis in rats. Our findings suggest that the microalga C. debaryana or derived oxylipins could be used as nutraceuticals in the treatment of the active phase of IBD.


Assuntos
Chlamydomonas/química , Colite/prevenção & controle , Animais , Anti-Inflamatórios , Biomassa , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/enzimologia , Colo/metabolismo , Ciclo-Oxigenase 2/análise , Ácidos Graxos Ômega-3/administração & dosagem , Liofilização , Ácidos Linoleicos/administração & dosagem , Masculino , Neutrófilos/patologia , Óxido Nítrico Sintase Tipo II/análise , Oxilipinas/administração & dosagem , Peroxidase/metabolismo , Ratos , Ratos Wistar , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/biossíntese
17.
Phytochemistry ; 102: 152-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24703579

RESUMO

The chemical study of the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana has led to the isolation of oxylipins. The samples of C. debaryana have yielded the compounds (4Z,7Z,9E,11S,13Z)-11-hydroxyhexadeca-4,7,9,13-tetraenoic acid (1), (4Z,7E,9E,13Z)-11-hydroxyhexadeca-4,7,9,13-tetraenoic acid (2), (4Z,6E,10Z,13Z)-8-hydroxyhexadeca-4,6,10,13-tetraenoic acid (3), (4Z,8E,10Z,13Z)-7-hydroxyhexadeca-4,8,10,13-tetraenoic acid (4), and (5E,7Z,10Z,13Z)-4-hydroxyhexadeca-5,7,10,13-tetraenoic acid (5), which are derived from the fatty acid 16:4Δ(4,7,10,13) together with the compound (5Z,9Z,11E,15Z)-13-hydroxyoctadeca-5,9,11,15-tetraenoic acid (7) derived from coniferonic acid (18:4Δ(5,9,12,15)). In addition, the known polyunsaturated hydroxy acids 11-HHT (6), (5Z,9Z,11E)-13-hydroxyoctadeca-5,9,11-trienoic acid (8), (13S)-HOTE (9), (9E,11E,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid (10), 9-HOTE (11), 12-HOTE (12), 16-HOTE (13) and (13S)-HODE (14) have also been obtained. The chemical study of N. gaditana has led to the isolation of the hydroxy acid (15S)-HEPE (15) derived from EPA (20:5Δ(5,8,11,14,17)). The structures of the isolated compounds were established by spectroscopic means. The optical activity displayed by oxylipins 1, 2, 6, 7, 9, 10, 14, and 15 suggests the occurrence of LOX-mediated pathways in C. debaryana and N. gaditana. In anti-inflammatory assays, all the tested compounds inhibited the TNF-α production in LPS-stimulated THP-1 macrophages. The most active oxylipin was the C-16 hydroxy acid 1, which at 25µM caused a 60% decrease of the TNF-α level.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Chlamydomonas/química , Oxilipinas/farmacologia , Estramenópilas/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Oxilipinas/química , Oxilipinas/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/biossíntese
18.
Inflammopharmacology ; 22(3): 179-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23925459

RESUMO

Cycloeucalenone (1) and 24-oxo-31-norcycloartanone (2) obtained from Solanum cernuum Vell. were assayed to explore their pharmacologic roles. Previous studies showed that (2) has selective activity against lung tumor cell line (NCIH460) which expresses high levels of COX-2, suggesting its role in inflammatory process, and also a link between chronic inflammation and cancer-associated process. Dichloromethane crude extract (DCE) significantly reduced writhing and stretching induced by 0.8 % acetic acid at a dose of 100, 300, and 600 mg/kg, po; oral administration of different doses of (1) and (2) also displayed significant analgesic and anti-inflammatory effects in the writhing acetic acid test (p < 0.0001). Selected oral doses of both compounds (100 and 50 mg/kg) were assayed in the carrageenan-induced paw edema model. Compound (2) showed significant activity during the early phase (1.5-6 h) and also in the late phase (48 h) (p < 0.01). The anti-nociceptive activity observed for the compounds (1) and (2) and DCE was found to be related to the inhibition of different mediators involved in inflammation and nociceptive process. Both compounds decrease COX-2 protein expression, although only compound (2) reached a significant response (p < 0.05 vs control). However, in vitro Sirtuin 1 activity and TNF-α production in THP-1 macrophages were not affected.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fitosteróis/uso terapêutico , Extratos Vegetais/uso terapêutico , Solanum , Triterpenos/uso terapêutico , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , Edema/tratamento farmacológico , Edema/patologia , Camundongos , Camundongos Endogâmicos BALB C , Dor/tratamento farmacológico , Dor/patologia , Fitosteróis/química , Fitosteróis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Triterpenos/química , Triterpenos/isolamento & purificação
19.
Curr Pharm Des ; 18(26): 3939-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22632755

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder caused by deregulated immune responses in a genetically predisposed individual. This is a complex process mediated by cytokines, chemokines, adhesion molecules, cytoplasm nuclear receptors, among others. Recent data support a participation of the endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in IBD. Moreover, now it is evident that chronic degenerative pathologies, including IBD, share comparable disease mechanisms at the cellular level with alteration of the autophagy mechanisms. Mounting evidence suggests that the risk of developing colorectal cancer (CRC) is dramatically increased in patients with chronic inflammatory disease. Chronic inflammation in IBD exposes these patients to a number of signals known to have tumorigenic effects including nuclear factor kappa B (NF-κB) activation, proinflammatory cytokines and prostaglandins release and reactive oxygen species (ROS) production. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing, or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon cancer chemopreventive properties of phytochemicals derived from both plants (curcumin, resveratrol, epigallocatechin gallate, quercetin or genistein) and substances from marine environment, including microalgae species and their products. This review summarizes the mechanisms by which these naturally occurring compounds may mediate chemopreventive effects on cancer. These actions include induction of cell cycle arrest and apoptosis, inhibition of cell proliferation, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.


Assuntos
Neoplasias Colorretais/prevenção & controle , Inflamação/complicações , Doenças Inflamatórias Intestinais/complicações , Animais , Quimioprevenção/métodos , Doença Crônica , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Suplementos Nutricionais , Humanos , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Microalgas/química , Fitoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA