Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Anaesthesiol ; 38(12): 1242-1252, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34155171

RESUMO

BACKGROUND: Cardiac output (CO) monitoring is the basis of goal-directed treatment for major abdominal surgery. A capnodynamic method estimating cardiac output (COEPBF) by continuously calculating nonshunted pulmonary blood flow has previously shown good agreement and trending ability when evaluated in mechanically ventilated pigs. OBJECTIVES: To compare the performance of the capnodynamic method of CO monitoring with transpulmonary thermodilution (COTPTD) in patients undergoing major abdominal surgery. DESIGN: Prospective, observational, method comparison study. Simultaneous measurements of COEPBF and COTPTD were performed before incision at baseline and before and after increased (+10 cmH2O) positive end-expiratory pressure (PEEP), activation of epidural anaesthesia and intra-operative events of hypovolemia and low CO. The first 25 patients were ventilated with PEEP 5 cmH2O (PEEP5), while in the last 10 patients, lung recruitment followed by individual PEEP adjustment (PEEPadj) was performed before protocol start. SETTING: Karolinska University Hospital, Stockholm, Sweden. PATIENTS: In total, 35 patients (>18 years) scheduled for major abdominal surgery with advanced hemodynamic monitoring were included in the study. MAIN OUTCOME MEASURES AND ANALYSIS: Agreement and trending ability between COEPBF and COTPTD at different clinical moments were analysed with Bland--Altman and four quadrant plots. RESULTS: In total, 322 paired values, 227 in PEEP5 and 95 in PEEPadj were analysed. Respectively, the mean COEPBF and COTPTD were 4.5 ±â€Š1.0 and 4.8 ±â€Š1.1 in the PEEP5 group and 4.9 ±â€Š1.2 and 5.0 ±â€Š1.0 l min-1 in the PEEPadj group. Mean bias (levels of agreement) and percentage error (PE) were -0.2 (-2.2 to 1.7) l min-1 and 41% for the PEEP5 group and -0.1 (-1.7 to 1.5) l min-1 and 31% in the PEEPadj group. Concordance rates during changes in COEPBF and COTPTD were 92% in the PEEP5 group and 90% in the PEEPadj group. CONCLUSION: COEPBF provides continuous noninvasive CO estimation with acceptable performance, which improved after lung recruitment and PEEP adjustment, although not interchangeable with COTPTD. This method may become a tool for continuous intra-operative CO monitoring during general anaesthesia in the future. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT03444545.


Assuntos
Respiração com Pressão Positiva , Termodiluição , Animais , Débito Cardíaco , Humanos , Monitorização Fisiológica , Estudos Prospectivos , Reprodutibilidade dos Testes , Suínos
2.
Acta Anaesthesiol Scand ; 64(5): 670-676, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31965563

RESUMO

INTRODUCTION: Lung protective ventilation can decrease post-operative pulmonary complications. The aim of this study was to evaluate a capnodynamic method estimating effective lung volume (ELV) as a proxy for end-expiratory lung volume in response to PEEP changes in patients, healthy subjects and a porcine model. METHODS: Agreement and trending ability for ELV in anaesthetized patients and agreement in awake subjects were evaluated using nitrogen multiple breath wash-out/in and plethysmography as a reference respectively. Agreement and trending ability were evaluated in pigs during PEEP elevations with inert gas wash-out as reference. RESULTS: In anaesthetized patients bias (95% limits of agreement [LoA]) and percentage error (PE) at PEEP 0 cm H2 O were 133 mL (-1049 to 1315) and 71%, at PEEP 5 cm H2 O 161 mL (-1291 to 1613 mL) and 66%. In healthy subjects: 21 mL (-755 to 796 mL) and 26%. In porcines, at PEEP 5-20 cm H2 O bias decreased from 223 mL to 136 mL LoA (34-412) to (-30 to 902) and PE 29%-49%. Trending abilities in anaesthetized patients and porcines were 100% concordant. CONCLUSION: The ELV-method showed low bias but high PE in anaesthetized patients. Agreement was good in awake subjects. In porcines, agreement was good at lower PEEP levels. Concordance related to PEEP changes reached 100% in all settings. This method may become a useful trending tool for monitoring lung function during mechanical ventilation, if findings are confirmed in other clinical contexts.


Assuntos
Capnografia/métodos , Pulmão/fisiologia , Respiração com Pressão Positiva , Adulto , Idoso , Animais , Capnografia/estatística & dados numéricos , Feminino , Humanos , Medidas de Volume Pulmonar , Masculino , Pessoa de Meia-Idade , Modelos Animais , Reprodutibilidade dos Testes , Respiração , Suínos , Volume de Ventilação Pulmonar , Adulto Jovem
3.
J Clin Monit Comput ; 34(6): 1199-1207, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745763

RESUMO

Respiratory failure may cause hemodynamic instability with strain on the right ventricle. The capnodynamic method continuously calculates cardiac output (CO) based on effective pulmonary blood flow (COEPBF) and could provide CO monitoring complementary to mechanical ventilation during surgery and intensive care. The aim of the current study was to evaluate the ability of a revised capnodynamic method, based on short expiratory holds (COEPBFexp), to estimate CO during acute respiratory failure (LI) with high shunt fractions before and after compliance-based lung recruitment. Ten pigs were submitted to lung lavage and subsequent ventilator-induced lung injury. COEPBFexp, without any shunt correction, was compared to a reference method for CO, an ultrasonic flow probe placed around the pulmonary artery trunk (COTS) at (1) baseline in healthy lungs with PEEP 5 cmH2O (HLP5), (2) LI with PEEP 5 cmH2O (LIP5) and (3) LI after lung recruitment and PEEP adjustment (LIPadj). CO changes were enforced during LIP5 and LIPadj to estimate trending. LI resulted in changes in shunt fraction from 0.1 (0.03) to 0.36 (0.1) and restored to 0.09 (0.04) after recruitment manoeuvre. Bias (levels of agreement) and percentage error between COEPBFexp and COTS changed from 0.5 (- 0.5 to 1.5) L/min and 30% at HLP5 to - 0.6 (- 2.3 to 1.1) L/min and 39% during LIP5 and finally 1.1 (- 0.3 to 2.5) L/min and 38% at LIPadj. Concordance during CO changes improved from 87 to 100% after lung recruitment and PEEP adjustment. COEPBFexp could possibly be used for continuous CO monitoring and trending in hemodynamically unstable patients with increased shunt and after recruitment manoeuvre.


Assuntos
Pulmão , Insuficiência Respiratória , Animais , Débito Cardíaco , Humanos , Artéria Pulmonar , Respiração Artificial , Insuficiência Respiratória/terapia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA