Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612833

RESUMO

Angiosarcoma is a rare and aggressive type of soft-tissue sarcoma with high propensity to metastasize. For patients with metastatic angiosarcoma, prognosis is dismal and treatment options are limited. To improve the outcomes, identifying patients with poor treatment response at an earlier stage is imperative, enabling alternative therapy. Consequently, there is a need for improved methods and biomarkers for treatment monitoring. Quantification of circulating tumor-DNA (ctDNA) is a promising approach for patient-specific monitoring of treatment response. In this case report, we demonstrate that quantification of ctDNA using SiMSen-Seq was successfully utilized to monitor a patient with metastatic angiosarcoma. By quantifying ctDNA levels using 25 patient-specific mutations in blood plasma throughout surgery and palliative chemotherapy, we predicted the outcome and monitored the clinical response to treatment. This was accomplished despite the additional complexity of the patient having a synchronous breast cancer. The levels of ctDNA showed a superior correlation to the clinical outcome compared with the radiological evaluations. Our data propose a promising approach for personalized biomarker analysis to monitor treatment in angiosarcomas, with potential applicability to other cancers and for patients with synchronous malignancies.


Assuntos
Neoplasias da Mama , Hemangiossarcoma , Segunda Neoplasia Primária , Sarcoma , Humanos , Feminino , Hemangiossarcoma/genética , Hemangiossarcoma/terapia , Neoplasias da Mama/genética , Agressão
2.
Commun Biol ; 7(1): 249, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429519

RESUMO

Mutation analysis is typically performed at the DNA level since most technical approaches are developed for DNA analysis. However, some applications, like transcriptional mutagenesis, RNA editing and gene expression analysis, require RNA analysis. Here, we combine reverse transcription and digital DNA sequencing to enable low error digital RNA sequencing. We evaluate yield, reproducibility, dynamic range and error correction rate for seven different reverse transcription conditions using multiplexed assays. The yield, reproducibility and error rate vary substantially between the specific conditions, where the yield differs 9.9-fold between the best and worst performing condition. Next, we show that error rates similar to DNA sequencing can be achieved for RNA using appropriate reverse transcription conditions, enabling detection of mutant allele frequencies <0.1% at RNA level. We also detect mutations at both DNA and RNA levels in tumor tissue using a breast cancer panel. Finally, we demonstrate that digital RNA sequencing can be applied to liquid biopsies, analyzing cell-free gene transcripts. In conclusion, we demonstrate that digital RNA sequencing is suitable for ultrasensitive RNA mutation analysis, enabling several basic research and clinical applications.


Assuntos
DNA , RNA , RNA/genética , Reprodutibilidade dos Testes , Mutação , DNA/genética , Análise de Sequência de RNA
3.
Mol Aspects Med ; 96: 101253, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38367531

RESUMO

Massively parallel sequencing technologies have long been used in both basic research and clinical routine. The recent introduction of digital sequencing has made previously challenging applications possible by significantly improving sensitivity and specificity to now allow detection of rare sequence variants, even at single molecule level. Digital sequencing utilizes unique molecular identifiers (UMIs) to minimize sequencing-induced errors and quantification biases. Here, we discuss the principles of UMIs and how they are used in digital sequencing. We outline the properties of different UMI types and the consequences of various UMI approaches in relation to experimental protocols and bioinformatics. Finally, we describe how digital sequencing can be applied in specific research fields, focusing on cancer management where it can be used in screening of asymptomatic individuals, diagnosis, treatment prediction, prognostication, monitoring treatment efficacy and early detection of treatment resistance as well as relapse.


Assuntos
Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sensibilidade e Especificidade
4.
Exp Cell Res ; 422(1): 113418, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402425

RESUMO

DDIT3 is a tightly regulated basic leucine zipper (bZIP) transcription factor and key regulator in cellular stress responses. It is involved in a variety of pathological conditions and may cause cell cycle block and apoptosis. It is also implicated in differentiation of some specialized cell types and as an oncogene in several types of cancer. DDIT3 was originally believed to act as a dominant-negative inhibitor by forming heterodimers with other bZIP transcription factors, preventing their DNA binding and transactivating functions. DDIT3 has, however, been reported to bind DNA and regulate target genes. Here, we employed ChIP sequencing combined with microarray-based expression analysis to identify direct binding motifs and target genes of DDIT3. The results reveal DDIT3 binding to motifs similar to other bZIP transcription factors, known to form heterodimers with DDIT3. Binding to a class III satellite DNA repeat sequence was also detected. DDIT3 acted as a DNA-binding transcription factor and bound mainly to the promotor region of regulated genes. ChIP sequencing analysis of histone H3K27 methylation and acetylation showed a strong overlap between H3K27-acetylated marks and DDIT3 binding. These results support a role for DDIT3 as a transcriptional regulator of H3K27ac-marked genes in transcriptionally active chromatin.


Assuntos
Genômica , Fatores de Transcrição , Sítios de Ligação , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina Básica , DNA
5.
Front Oncol ; 12: 816894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186752

RESUMO

Myxoid liposarcoma is one of the most common sarcoma entities characterized by FET fusion oncogenes. Despite a generally favorable prognosis of myxoid liposarcoma, chemotherapy resistance remains a clinical problem. This cancer stem cell property is associated with JAK-STAT signaling, but the link to the myxoid-liposarcoma-specific FET fusion oncogene FUS-DDIT3 is not known. Here, we show that ectopic expression of FUS-DDIT3 resulted in elevated levels of STAT3 and phosphorylated STAT3. RNA sequencing identified 126 genes that were regulated by both FUS-DDIT3 expression and JAK1/2 inhibition using ruxolitinib. Sixty-six of these genes were connected in a protein interaction network. Fifty-three and 29 of these genes were confirmed as FUS-DDIT3 and STAT3 targets, respectively, using public chromatin immunoprecipitation sequencing data sets. Enriched gene sets among the 126 regulated genes included processes related to cytokine signaling, adipocytokine signaling, and chromatin remodeling. We validated CD44 as a target gene of JAK1/2 inhibition and as a potential cancer stem cell marker in myxoid liposarcoma. Finally, we showed that FUS-DDIT3 interacted with phosphorylated STAT3 in association with subunits of the SWI/SNF chromatin remodeling complex and PRC2 repressive complex. Our data show that the function of FUS-DDIT3 is closely connected to JAK-STAT signaling. Detailed deciphering of molecular mechanisms behind tumor progression opens up new avenues for targeted therapies in sarcomas and leukemia characterized by FET fusion oncogenes.

6.
Mol Oncol ; 16(13): 2470-2495, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35182012

RESUMO

FET fusion oncoproteins containing one of the FET (FUS, EWSR1, TAF15) family proteins juxtaposed to alternative transcription-factor partners are characteristic of more than 20 types of sarcoma and leukaemia. FET oncoproteins bind to the SWI/SNF chromatin remodelling complex, which exists in three subtypes: cBAF, PBAF and GBAF/ncBAF. We used comprehensive biochemical analysis to characterize the interactions between FET oncoproteins, SWI/SNF complexes and the transcriptional coactivator BRD4. Here, we report that FET oncoproteins bind all three main SWI/SNF subtypes cBAF, PBAF and GBAF, and that FET oncoproteins interact indirectly with BRD4 via their shared interaction partner SWI/SNF. Furthermore, chromatin immunoprecipitation sequencing and proteomic analysis showed that FET oncoproteins, SWI/SNF components and BRD4 co-localize on chromatin and interact with mediator and RNA Polymerase II. Our results provide a possible molecular mechanism for the FET-fusion-induced oncogenic transcriptional profiles and may lead to novel therapies targeting aberrant SWI/SNF complexes and/or BRD4 in FET-fusion-caused malignancies.


Assuntos
Montagem e Desmontagem da Cromatina , Sarcoma , Proteínas de Ciclo Celular/metabolismo , Cromatina , Proteínas Cromossômicas não Histona/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteômica , Fatores de Transcrição/metabolismo
7.
Mol Cancer Ther ; 20(12): 2568-2576, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34552011

RESUMO

The majority of patients diagnosed with advanced gastrointestinal stromal tumors (GISTs) are successfully treated with a combination of surgery and tyrosine kinase inhibitors (TKIs). However, it remains challenging to monitor treatment efficacy and identify relapse early. Here, we utilized a sequencing strategy based on molecular barcodes and developed a GIST-specific panel to monitor tumor-specific and TKI resistance mutations in cell-free DNA and applied the approach to patients undergoing surgical treatment. Thirty-two patients with GISTs were included, and 161 blood plasma samples were collected and analyzed at routine visits before and after surgery and at the beginning, during, and after surgery. Patients were included regardless of their risk category. Our GIST-specific sequencing approach allowed detection of tumor-specific mutations and TKI resistance mutations with mutant allele frequency < 0.1%. Circulating tumor DNA (ctDNA) was detected in at least one timepoint in nine of 32 patients, ranging from 0.04% to 93% in mutant allele frequency. High-risk patients were more often ctDNA positive than other risk groups (P < 0.05). Patients with detectable ctDNA also displayed higher tumor cell proliferation rates (P < 0.01) and larger tumor sizes (P < 0.01). All patients who were ctDNA positive during surgery became negative after surgery. Finally, in two patients who progressed on TKI treatment, we detected multiple resistance mutations. Our data show that ctDNA may become a clinically useful biomarker in monitoring treatment efficacy in patients with high-risk GISTs and can assist in treatment decision making.


Assuntos
DNA Tumoral Circulante/metabolismo , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/cirurgia , Inibidores de Proteínas Quinases/uso terapêutico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia
8.
Nucleic Acids Res ; 46(D1): D930-D936, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140522

RESUMO

Pharmaceuticals are designed to interact with specific molecular targets in humans and these targets generally have orthologs in other species. This provides opportunities for the drug discovery community to use alternative model species for drug development. It also means, however, there is potential for mode of action related effects in non-target wildlife species as many pharmaceuticals reach the environment through patient use and manufacturing wastes. Acquiring insight in drug target ortholog predictions across species and taxonomic groups has proven difficult because of the lack of an optimal strategy and because necessary information is spread across multiple and diverse sources and platforms. We introduce a new research platform tool, ECOdrug, that reliably connects drugs to their protein targets across divergent species. It harmonizes ortholog predictions from multiple sources via a simple user interface underpinning critical applications for a wide range of studies in pharmacology, ecotoxicology and comparative evolutionary biology. ECOdrug can be used to identify species with drug targets and identify drugs that interact with those targets. As such, it can be applied to support intelligent targeted drug safety testing by ensuring appropriate and relevant species are selected in ecological risk assessments. ECOdrug is freely accessible and available at: http://www.ecodrug.org.


Assuntos
Antineoplásicos/farmacologia , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/genética , RNA Neoplásico/genética , Sequência de Aminoácidos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Conservação dos Recursos Naturais , Sequência Conservada , Coleta de Dados , Apresentação de Dados , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Peixes/genética , Previsões , Humanos , Invertebrados/genética , Mamíferos/genética , Proteínas de Neoplasias/química , Neoplasias/tratamento farmacológico , Medição de Risco , Especificidade da Espécie , Interface Usuário-Computador
9.
BMC Bioinformatics ; 14: 70, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23444967

RESUMO

BACKGROUND: Analysis of gene expression from different species is a powerful way to identify evolutionarily conserved transcriptional responses. However, due to evolutionary events such as gene duplication, there is no one-to-one correspondence between genes from different species which makes comparison of their expression profiles complex. RESULTS: In this paper we describe a new method for cross-species meta-analysis of gene expression. The method takes the homology structure between compared species into account and can therefore compare expression data from genes with any number of orthologs and paralogs. A simulation study shows that the proposed method results in a substantial increase in statistical power compared to previously suggested procedures. As a proof of concept, we analyzed microarray data from heat stress experiments performed in eight species and identified several well-known evolutionarily conserved transcriptional responses. The method was also applied to gene expression profiles from five studies of estrogen exposed fish and both known and potentially novel responses were identified. CONCLUSIONS: The method described in this paper will further increase the potential and reliability of meta-analysis of gene expression profiles from evolutionarily distant species. The method has been implemented in R and is freely available at http://bioinformatics.math.chalmers.se/Xspecies/.


Assuntos
Perfilação da Expressão Gênica/métodos , Animais , Interpretação Estatística de Dados , Estrogênios/farmacologia , Evolução Molecular , Peixes/genética , Peixes/metabolismo , Resposta ao Choque Térmico/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA