Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(2): 95-103, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35702031

RESUMO

Colistin is an effective antibiotic against multidrug-resistant gram-negative bacterial infections; however, neurotoxic effects are fundamental dose-limiting factors for this treatment. Stem cell therapy is a promising method for treating neuronal diseases. Multipotent mesenchymal stromal cells (MSC) represent a promising source for regenerative medicine. Identification of neuroprotective agents that can be co-administered with colistin has the potential to allow the clinical application of this essential drug. This study was conducted to assess the potential protective effects of MSC, against colistin-induced neurotoxicity, and the possible mechanisms underlying any effect. Forty adult female albino rats were randomly classified into four equal groups; the control group, the MSC-treated group (A single dose of 1 × 106/mL MSCs through the tail vein), the colistin-treated group (36 mg/kg/d colistin was given for 7 d) and the colistin and MSC treated group (36 mg/kg/d colistin was administered for 7 d, and 1 × 106/mL MSCs). Colistin administration significantly increased GFAP, NGF, Beclin-1, IL-6, and TNF-α immunreactivity intensity. MSC administration in colistin-treated rats partially restored each of these markers. Histopathological changes in brain tissues were also alleviated by MSC co-treatment. Our study reveals a critical role of inflammation, autophagy, and apoptosis in colistin-induced neurotoxicity and showed that they were markedly ameliorated by MSC co-administration. Therefore, MSC could represent a promising agent for prevention of colistin-induced neurotoxicity.


Assuntos
Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Animais , Feminino , Ratos , Antibacterianos/toxicidade , Apoptose , Colistina/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle
2.
Ultrastruct Pathol ; 46(4): 313-322, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35866415

RESUMO

The Effect of Pulsed Radiofrequency Application on Nerve Healing After Sciatic Nerve Anastomosis in Rats. In this study, we aimed to evaluate the histomorphological and functional effect of Pulsed Radiofrequency (PRF) application on regeneration after experimental nerve damage in rats. Forty Sprague-Dawley male rats were used in the study. Sciatic nerve incision was applied to all rats and then anastomosis was performed. Twenty rats were separated as the control group, and the remaining 20 rats underwent PRF every day at 42oC, for 120 seconds. The groups were divided into two further subgroups to be sacrificed on the 15th and 30th days. Tissue samples were obtained from all groups at 24 hours and 72 hours after the injury. Sections of sciatic nerve samples were stained with hematoxylin-eosin for light microscopic investigation and prepared for evaluation of ultrastructural changes with transmission electron microscopy. In the evaluation of axon numbers and diameters were seen that the 30th-day RF group had an increase compared to the control group. In the electron microscopic examination, it was observed that myelinated and unmyelinated nerve fiber sheaths had borders that are more regular in the RF group, the nucleus structures of schwann cells were better preserved, mitochondrial damage was less, and the extensions of fibroblast and collagen fibers were smoother than the control group. The findings suggested that PRF application has a positive contribution histologically on nerve healing in the early period after full-layer incision nerve injury anastomosis surgery.


Assuntos
Neuralgia , Tratamento por Radiofrequência Pulsada , Anastomose Cirúrgica , Animais , Colágeno , Modelos Animais de Doenças , Amarelo de Eosina-(YS) , Hematoxilina , Masculino , Neuralgia/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia
3.
Anatol J Cardiol ; 19(3): 213-221, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29521316

RESUMO

OBJECTIVE: Cisplatin (CDDP) has been known to be an effective antineoplastic drug; however, it has a cardiotoxic effect. Curcumin (CMN) and beta-carotene (BC) have been suggested to protect biological systems against CDDP-induced damage. The current study was conducted to evaluate the possible protective roles of CMN and BC on CDDP-induced cardiotoxicity in rat cardiac tissues. METHODS: A total of 49 adult female Wistar albino rats were equally divided into seven groups as follows: control (no medication), sesame oil (1 mg/kg), CDDP (single dose injection two times as once a week, 5 mg/kg/week), BC (100 mg/kg), CDDP+BC (pretreated BC for 30 min before CDDP injection), CMN (200 mg/kg), and CDDP+CMN (pretreated CMN for 30 min before CDDP injection). These treatments were applied intraperitoneally for CDDP and with gavage for CMN and BC. The oxidative/antioxidant indicators, inflammatory cytokines, and histopathological alterations were examined. RESULTS: These alterations included a marked increase in malondialdehyde (MDA) level, significant decrease in catalase (CAT) and superoxide dismutase (SOD) activities, and significant elevation of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, interleukin (IL)-6 in the CDDP group compared with the other groups. Histopathologically, CDDP-induced severe myocardial degenerative changes were observed. However, the CDDP-induced disturbances in the above-mentioned parameters significantly improved by treatment with BC and particularly CMN. CONCLUSION: This study indicated that CDDP treatment markedly caused cardiotoxicity; however, treatment with CMN or BC ameliorated this cardiotoxicity in rats. Furthermore, these findings revealed that treatment with CMN has a higher cardioprotective effect than that with BC against CDDP-induced cardiotoxicity in rat cardiac tissues.


Assuntos
Antineoplásicos/toxicidade , Cardiotônicos/uso terapêutico , Cardiotoxicidade/prevenção & controle , Cisplatino/toxicidade , Curcumina/uso terapêutico , beta Caroteno/uso terapêutico , Administração Oral , Animais , Cardiotônicos/administração & dosagem , Curcumina/administração & dosagem , Modelos Animais de Doenças , Feminino , Ratos , Ratos Wistar , beta Caroteno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA