Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 11(11): 2884-2903, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021002

RESUMO

Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Anoikis , Proteína Acessória do Receptor de Interleucina-1 , Sarcoma de Ewing , Adulto , Linhagem Celular Tumoral , Criança , Humanos , Proteômica , Receptores de Interleucina-1 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
2.
Cell Death Dis ; 12(4): 353, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824272

RESUMO

As an immune evasion and survival strategy, the Plasmodium falciparum malaria parasite has evolved a protein named VAR2CSA. This protein mediates sequestration of infected red blood cells in the placenta through the interaction with a unique carbohydrate abundantly and exclusively present in the placenta. Cancer cells were found to share the same expression of this distinct carbohydrate, termed oncofetal chondroitin sulfate on their surface. In this study we have used a protein conjugation system to produce a bispecific immune engager, V-aCD3, based on recombinant VAR2CSA as the cancer targeting moiety and an anti-CD3 single-chain variable fragment linked to a single-chain Fc as the immune engager. Conjugation of these two proteins resulted in a single functional moiety that induced immune mediated killing of a broad range of cancer cells in vitro and facilitated tumor arrest in an orthotopic bladder cancer xenograft model.


Assuntos
Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sulfatos de Condroitina/imunologia , Sulfatos de Condroitina/metabolismo , Feminino , Humanos , Malária/imunologia , Malária/metabolismo , Malária Falciparum/imunologia , Placenta/metabolismo , Plasmodium falciparum/metabolismo , Gravidez , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/metabolismo
3.
Mol Cancer Res ; 14(12): 1288-1299, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27655130

RESUMO

Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-ß1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes ß-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. IMPLICATIONS: The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR.


Assuntos
Antígenos de Protozoários/genética , Sulfatos de Condroitina/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Antígenos de Protozoários/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Linhagem Celular Tumoral , Sulfatos de Condroitina/genética , Humanos , Melanoma Experimental/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
4.
Oncotarget ; 7(37): 59441-59457, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27509063

RESUMO

It is now widely accepted that therapeutic antibodies targeting epidermal growth factor receptor (EGFR) can have efficacy in KRAS wild-type advanced colorectal cancer (CRC) patients. What remains to be ascertained is whether a subgroup of KRAS-mutated CRC patients might not also derive benefit from EGFR inhibitors. Metalloproteinase inhibitor 1 (TIMP-1) is a pleiotropic factor predictive of survival outcome of CRC patients. Levels of TIMP-1 were measured in pre-treatment plasma samples (n = 426) of metastatic CRC patients randomized to Nordic FLOX (5-fluorouracil and oxaliplatin) +/- cetuximab (NORDIC VII study). Multivariate analysis demonstrated a significant interaction between plasma TIMP-1 protein levels, KRAS status and treatment with patients bearing KRAS mutated tumors and high TIMP-1 plasma level (> 3rd quartile) showing a significantly longer overall survival if treated with cetuximab (HR, 0.48; 95% CI, 0.25 to 0.93). To gain mechanistic insights into this association we analyzed a set of five different CRC cell lines. We show here that EGFR signaling induces TIMP-1 expression in CRC cells, and that TIMP-1 promotes a more aggressive behavior, specifically in KRAS mutated cells. The two sets of data, clinical and in vitro, are complementary and support each other, lending strength to our contention that TIMP- 1 plasma levels can identify a subset of patients with KRAS-mutated metastatic CRC that will have benefit from EGFR-inhibition therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidor Tecidual de Metaloproteinase-1/sangue , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Cetuximab/uso terapêutico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Feminino , Fluoruracila/uso terapêutico , Humanos , Masculino , Metástase Neoplásica , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Fenótipo , Transdução de Sinais , Análise de Sobrevida , Inibidor Tecidual de Metaloproteinase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA