Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(9): 5061-5073, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36821524

RESUMO

The application of bimolecular reductive elimination to the activation of iron catalysts for alkene-diene cycloaddition is described. Key to this approach was the synthesis, characterization, electronic structure determination, and ultimately solution stability of a family of pyridine(diimine) iron methyl complexes with diverse steric properties and electronic ground states. Both the aryl-substituted, (MePDI)FeCH3 and (EtPDI)FeCH3 (RPDI = 2,6-(2,6-R2-C6H3N═CMe)2C5H3N), and the alkyl-substituted examples, (CyAPDI)FeCH3 (CyAPDI = 2,6-(C6H11N═CMe)2C5H3N), have molecular structures significantly distorted from planarity and S = 3/2 ground states. The related N-arylated derivative bearing 2,6-di-isopropyl aryl substituents, (iPrPDI)FeCH3, has an idealized planar geometry and exhibits spin crossover behavior from S = 1/2 to S = 3/2 states. At 23 °C under an N2 atmosphere, both (MePDI)FeCH3 and (EtPDI)FeCH3 underwent reductive elimination of ethane to form the iron dinitrogen precatalysts, [(MePDI)Fe(N2)]2(µ-N2) and [(EtPDI)Fe(N2)]2(µ-N2), respectively, while (iPrPDI)FeCH3 proved inert to C-C bond formation. By contrast, addition of butadiene to all three iron methyl complexes induced ethane formation and generated the corresponding iron butadiene complexes, (RPDI)Fe(η4-C4H6) (R = Me, Et, iPr), known precatalysts for the [2+2] cycloaddition of olefins and dienes. Kinetic, crossover experiments, and structural studies were combined with magnetic measurements and Mössbauer spectroscopy to elucidate the electronic and steric features of the iron complexes that enable this unusual reductive elimination and precatalyst activation pathway. Transmetalation of methyl groups between iron centers was fast at ambient temperature and independent of steric environment or spin state, while the intermediate dimer underwent the sterically controlled rate-determining reaction with either N2 or butadiene to access a catalytically active iron compound.

2.
Chem Commun (Camb) ; 57(5): 595-598, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33338086

RESUMO

We report two anionic diphosphametallocenates, [K(2.2.2-crypt)][M(PC4Me4)2] (M = Cr, 2-Cr; Fe, 2-Fe). Both are low-spin (S = ½) by EPR spectroscopy and SQUID magnetometry. This contrasts the high-spin (S = 3/2) ferrocenate, [K(2.2.2-crypt)][Fe(C5H2-1,2,4-tBu)2] (4-Fe). Quantum chemical calculations suggest this is due to significant differences in ligand field splitting of the d-orbitals which also explain structural features in the 2-M complexes.

3.
Inorg Chem ; 58(18): 11920-11926, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31136155

RESUMO

A synthetic strategy featuring dicyanometalates [M(CN)2]- (M = Ag, Au) as N-coordinating ditopic linkers connecting partially blocked FeII centers has been employed to produce heterometallic hexanuclear complexes, which exhibit spin-crossover (SCO) behavior at the FeII sites. The reaction between tris(2-pyridylmethyl)amine (tpma)-capped FeII ions and [Ag(CN)2]- proceeded with partial decomposition of the dicyanoargentate and led to the formation of {[Fe(tpma)]4(µ-CN)2[µ-Ag(CN)2]2}(ClO4)4·3H2O (1), in which both [Ag(CN)2]- and CN- act as bridging ligands, and the opposite [Ag(CN)2]- bridges are engaged in a pronounced argentophilic d10-d10 interaction. In an analogous synthesis, the more stable [Au(CN)2]- species remained intact and furnished the complex {[Fe(tpma)]2[µ-Au2(CN)4]2} (2), which features two FeII centers bridged by two [Au2(CN)4]2- dimers. The use of S,S'-bis(2-pyridylmethyl)-1,2-thioethane (bpte) as a mixed-donor, N2S2-coordinating capping ligand yielded {[Fe(bpte)]2[µ-Au2(CN)4]2} (3), with a structure analogous to that of 2. Variable-temperature magnetic susceptibility measurements revealed that complexes 1-3 exhibit an onset of SCO above 350 K. Measurements above 400 K further confirmed the occurrence of a gradual spin-state conversion for complex 2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA