Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 1047928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425665

RESUMO

The study of microglia isolated from adult human brain tissue provides unique insight into the physiology of these brain immune cells and their role in adult human brain disorders. Reports of microglia in post-mortem adult human brain tissue show regional differences in microglial populations, however, these differences have not been fully explored in living microglia. In this study biopsy tissue was obtained from epileptic patients undergoing surgery and consisted of both cortical areas and neurogenic ventricular and hippocampal (Hp) areas. Microglia were concurrently isolated from both regions and compared by immunochemistry. Our initial observation was that a greater number of microglia resulted from isolation and culture of ventricular/Hp tissue than cortical tissue. This was found to be due to a greater proliferative capacity of microglia from ventricular/Hp regions compared to the cortex. Additionally, ventricular/Hp microglia had a greater proliferative response to the microglial mitogen Macrophage Colony-Stimulating Factor (M-CSF). This enhanced response was found to be associated with higher M-CSF receptor expression and higher expression of proteins involved in M-CSF signalling DAP12 and C/EBPß. Microglia from the ventricular/Hp region also displayed higher expression of the receptor for Insulin-like Growth Factor-1, a molecule with some functional similarity to M-CSF. Compared to microglia isolated from the cortex, ventricular/Hp microglia showed increased HLA-DP, DQ, DR antigen presentation protein expression and a rounded morphology. These findings show that microglia from adult human brain neurogenic regions are more proliferative than cortical microglia and have a distinct protein expression profile. The data present a case for differential microglial phenotype and function in different regions of the adult human brain and suggest that microglia in adult neurogenic regions are "primed" to an activated state by their unique tissue environment.

2.
Mol Cell Neurosci ; 123: 103768, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038081

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal movement disorder involving degeneration of motor neurons through dysfunction of the RNA-binding protein TDP-43. Pericytes, the perivascular cells of the blood-brain, blood-spinal cord, and blood-CSF barriers also degenerate in ALS. Indeed, pericytes are among the earliest cell types to show gene expression changes in pre-symptomatic animal models of ALS. This suggests that pericyte degeneration precedes neurodegeneration and may involve pericyte cell-autonomous TDP-43 dysfunction. Here we determined the effect of TDP-43 dysfunction in human brain pericytes on interleukin 6 (IL-6), a critical secreted inflammatory mediator reported to be regulated by TDP 43. Primary human brain pericytes were cultured from biopsy tissue from epilepsy surgeries and TDP-43 was silenced using siRNA. TDP-43 silencing of pericytes stimulated with pro-inflammatory cytokines, interleukin-1ß or tumour necrosis factor alpha, robustly suppressed the induction of IL-6 transcript and protein. IL-6 regulation by TDP-43 did not involve the assembly of TDP-43 nuclear splicing bodies, and did not occur via altered splicing of IL6. Instead, transcriptome-wide analysis by RNA-Sequencing identified a poison exon in the IL6 destabilising factor HNRNPD (AUF1) as a splicing target of TDP-43. Our data support a model whereby TDP-43 silencing favours destabilisation of IL6 mRNA, via enhanced AU-rich element-mediated decay by HNRNP/AUF1. This suggests that cell-autonomous deficits in TDP-43 function in human brain pericytes would suppress their production of IL-6. Given the importance of the blood-brain and blood-spinal cord barriers in maintaining motor neuron health, TDP-43 in human brain pericytes may represent a cellular target for ALS therapeutics.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Interleucina-6 , Pericitos , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Interleucina-6/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Medula Espinal/metabolismo
3.
Nat Protoc ; 17(2): 190-221, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022619

RESUMO

When modeling disease in the laboratory, it is important to use clinically relevant models. Patient-derived human brain cells grown in vitro to study and test potential treatments provide such a model. Here, we present simple, highly reproducible coordinated procedures that can be used to routinely culture most cell types found in the human brain from single neurosurgically excised brain specimens. The cell types that can be cultured include dissociated cultures of neurons, astrocytes, microglia, pericytes and brain endothelial and neural precursor cells, as well as explant cultures of the leptomeninges, cortical slice cultures and brain tumor cells. The initial setup of cultures takes ~2 h, and the cells are ready for further experiments within days to weeks. The resulting cells can be studied as purified or mixed population cultures, slice cultures and explant-derived cultures. This protocol therefore enables the investigation of human brain cells to facilitate translation of neuroscience research to the clinic.


Assuntos
Células-Tronco Neurais
4.
Mol Neurodegener ; 13(1): 44, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30124174

RESUMO

BACKGROUND: Microglia play critical roles in the brain during homeostasis and pathological conditions. Understanding the molecular events underpinning microglial functions and activation states will further enable us to target these cells for the treatment of neurological disorders. The transcription factor PU.1 is critical in the development of myeloid cells and a major regulator of microglial gene expression. In the brain, PU.1 is specifically expressed in microglia and recent evidence from genome-wide association studies suggests that reductions in PU.1 contribute to a delayed onset of Alzheimer's disease (AD), possibly through limiting neuroinflammatory responses. METHODS: To investigate how PU.1 contributes to immune activation in human microglia, microarray analysis was performed on primary human mixed glial cultures subjected to siRNA-mediated knockdown of PU.1. Microarray hits were confirmed by qRT-PCR and immunocytochemistry in both mixed glial cultures and isolated microglia following PU.1 knockdown. To identify attenuators of PU.1 expression in microglia, high throughput drug screening was undertaken using a compound library containing FDA-approved drugs. NanoString and immunohistochemistry was utilised to investigate the expression of PU.1 itself and PU.1-regulated mediators in primary human brain tissue derived from neurologically normal and clinically and pathologically confirmed cases of AD. RESULTS: Bioinformatic analysis of gene expression upon PU.1 silencing in mixed glial cultures revealed a network of modified AD-associated microglial genes involved in the innate and adaptive immune systems, particularly those involved in antigen presentation and phagocytosis. These gene changes were confirmed using isolated microglial cultures. Utilising high throughput screening of FDA-approved compounds in mixed glial cultures we identified the histone deacetylase inhibitor vorinostat as an effective attenuator of PU.1 expression in human microglia. Further characterisation of vorinostat in isolated microglial cultures revealed gene and protein changes partially recapitulating those seen following siRNA-mediated PU.1 knockdown. Lastly, we demonstrate that several of these PU.1-regulated genes are expressed by microglia in the human AD brain in situ. CONCLUSIONS: Collectively, these results suggest that attenuating PU.1 may be a valid therapeutic approach to limit microglial-mediated inflammatory responses in AD and demonstrate utility of vorinostat for this purpose.


Assuntos
Doença de Alzheimer/metabolismo , Regulação da Expressão Gênica/fisiologia , Microglia/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Microglia/efeitos dos fármacos , Vorinostat/farmacologia
5.
BMC Neurosci ; 19(1): 6, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29471788

RESUMO

BACKGROUND: Brain pericytes ensheathe the endothelium and contribute to formation and maintenance of the blood-brain-barrier. Additionally, pericytes are involved in several aspects of the CNS immune response including scarring, adhesion molecule expression, chemokine secretion, and phagocytosis. In vitro cultures are routinely used to investigate these functions of brain pericytes, however, these are highly plastic cells and can display differing phenotypes and functional responses depending on their culture conditions. Here we sought to investigate how two commonly used culture media, high serum containing DMEM/F12 and low serum containing Pericyte Medium (ScienCell), altered the phenotype of human brain pericytes and neuroinflammatory responses. METHODS: Pericytes were isolated from adult human brain biopsy tissue and cultured in DMEM/F12 (D-pericytes) or Pericyte Medium (P-pericytes). Immunocytochemistry, qRT-PCR, and EdU incorporation were used to determine how this altered their basal phenotype, including the expression of pericyte markers, proliferation, and cell morphology. To determine whether culture media altered the inflammatory response in human brain pericytes, immunocytochemistry, qRT-PCR, cytometric bead arrays, and flow cytometry were used to investigate transcription factor induction, chemokine secretion, adhesion molecule expression, migration, phagocytosis, and response to inflammatory-related growth factors. RESULTS: P-pericytes displayed elevated proliferation and a distinct bipolar morphology compared to D-pericytes. Additionally, P-pericytes displayed lower expression of pericyte-associated markers NG2, PDGFRß, and fibronectin, with notably lower αSMA, CD146, P4H and desmin, and higher Col-IV expression. Nuclear NF-kB translocation in response to IL-1ß stimulation was observed in both cultures, however, P-pericytes displayed elevated expression of the transcription factor C/EBPδ, and lower expression of the adhesion molecule ICAM-1. P-pericytes displayed elevated phagocytic and migratory ability. Both cultures responded similarly to stimulation by the growth factors TGFß1 and PDGF-BB. CONCLUSIONS: Despite differences in their phenotype and magnitude of response, both P-pericytes and D-pericytes responded similarly to all examined functions, indicating that the neuroinflammatory phenotype of these cells is robust to culture conditions.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Regulação da Expressão Gênica/fisiologia , Pericitos/patologia , Pericitos/fisiologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Fibronectinas/metabolismo , Humanos , Interleucina-1beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA