RESUMO
Oral squamous cell carcinoma (OSCC) accounts for nearly 90 percent of oral cavity malignancies and is one of the most widespread oral cancers in the world. The microRNAs (miRNAs or miRs) have an important role in cellular processes comprising cell cycle, differentiation, and also apoptosis. MiRNAs are also implicated in the progression of cancers, including OSCC, through a variety of signaling pathways. One of the most significant signaling pathways in OSCC is the PI3K / Akt pathway that has been illustrated to be under the tight regulation of miRNAs. Deregulation or activation of the PI3K / Akt pathway due to mutations has been revealed to be implicated in the development of oral cancer. According to studies, more than 47% of HNSCC and around 38% of OSCC samples indicate at least one molecular alteration in this signaling pathway. The potential of miRNAs for their use as therapeutic tools in the diagnosis as well as treatment of numerous diseases have been confirmed. In the current review, we summarize miRNAs and their possible mechanisms as well as their functions in OSCC advancement and progression.
Assuntos
Carcinoma de Células Escamosas/genética , MicroRNAs/genética , Neoplasias Bucais/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismoRESUMO
Oral squamous cell cancer (OSCC) is one of the causes of death worldwide. The purpose of this project was to define the restoring of microRNA-143 in HN-5 cells and discover molecular apparatuses responsible for the anticancer processes. Firstly, expression levels of miR-143, K-Ras, MMP9 and C-Myc were evaluated in OSCC tissues. Then, microRNA-143 was transfected into HN-5 cells. The cytotoxic effects of microRNA-143 on HN-5 cells were evaluated. To estimate the effects of microRNA-143 on cell migration, wound healing assay was done. The expression levels of microRNA-143, K-Ras, MMP9, C-Myc, ADAMTS and CXCR4 were evaluated via the qRT-PCR method. microRNA-143 mimic inhibited cell migration in HN-5 cell line. microRNA-143 mimic decreased K-Ras, MMP9, C-My, ADAMTS and CXCR4 gene expression. microRNA-143 can inhibit HN-5 cells migration in vitro by down-regulating the expression of invasion-linked genes. Hence, microRNA-143 can be a new diagnostic biomarker and new therapeutic target for OSCC.