Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980769

RESUMO

Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3ß, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.

2.
J Enzyme Inhib Med Chem ; 38(1): 343-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519337

RESUMO

Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.


Assuntos
Ceramidase Ácida , Neoplasias , Humanos , Ceramidase Ácida/antagonistas & inibidores , Apoptose , Ceramidas/química , Bibliotecas de Moléculas Pequenas
3.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806262

RESUMO

Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5' AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Autofagia , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Endossomos , Fibroblastos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Esfingolipídeos/farmacologia , Esfingosina/análogos & derivados
4.
Eur J Med Chem ; 216: 113296, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677352

RESUMO

Acid (AC), neutral (NC) and alkaline ceramidase 3 (ACER3) are the most ubiquitous ceramidases and their therapeutic interest as targets in cancer diseases has been well sustained. This supports the importance of discovering potent and specific inhibitors for further use in combination therapies. Although several ceramidase inhibitors have been reported, most of them target AC and a few focus on NC. In contrast, well characterized ACER3 inhibitors are lacking. Here we report on the synthesis and screening of two series of 1-deoxy(dihydro)ceramide analogs on the three enzymes. Activity was determined using fluorogenic substrates in recombinant human NC (rhNC) and both lysates and intact cells enriched in each enzyme. None of the molecules elicited a remarkable AC inhibitory activity in either experimental setup, while using rhNC, several compounds of both series were active as non-competitive inhibitors with Ki values between 1 and 5 µM. However, a dramatic loss of potency occurred in NC-enriched cell lysates and no activity was elicited in intact cells. Interestingly, several compounds of Series 2 inhibited ACER3 dose-dependently in both cell lysates and intact cells with IC50's around 20 µM. In agreement with their activity in live cells, they provoked a significant increase in the amounts of ceramides. Overall, this study identifies highly selective ACER3 activity blockers in intact cells, opening the door to further medicinal chemistry efforts aimed at developing more potent and specific compounds.


Assuntos
Ceramidase Alcalina/antagonistas & inibidores , Ceramidas/química , Ceramidase Alcalina/genética , Ceramidase Alcalina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/metabolismo , Ceramidas/farmacologia , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Espectrometria de Massas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Esfingolipídeos/análise , Especificidade por Substrato
5.
Mol Cancer Res ; 18(3): 352-363, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744877

RESUMO

Acute myeloid leukemia (AML) is a disease characterized by uncontrolled proliferation of immature myeloid cells in the blood and bone marrow. The 5-year survival rate is approximately 25%, and recent therapeutic developments have yielded little survival benefit. Therefore, there is an urgent need to identify novel therapeutic targets. We previously demonstrated that acid ceramidase (ASAH1, referred to as AC) is upregulated in AML and high AC activity correlates with poor patient survival. Here, we characterized a novel AC inhibitor, SACLAC, that significantly reduced the viability of AML cells with an EC50 of approximately 3 µmol/L across 30 human AML cell lines. Treatment of AML cell lines with SACLAC effectively blocked AC activity and induced a decrease in sphingosine 1-phosphate and a 2.5-fold increase in total ceramide levels. Mechanistically, we showed that SACLAC treatment led to reduced levels of splicing factor SF3B1 and alternative MCL-1 mRNA splicing in multiple human AML cell lines. This increased proapoptotic MCL-1S levels and contributed to SACLAC-induced apoptosis in AML cells. The apoptotic effects of SACLAC were attenuated by SF3B1 or MCL-1 overexpression and by selective knockdown of MCL-1S. Furthermore, AC knockdown and exogenous C16-ceramide supplementation induced similar changes in SF3B1 level and MCL-1S/L ratio. Finally, we demonstrated that SACLAC treatment leads to a 37% to 75% reduction in leukemic burden in two human AML xenograft mouse models. IMPLICATIONS: These data further emphasize AC as a therapeutic target in AML and define SACLAC as a potent inhibitor to be further optimized for future clinical development.


Assuntos
Ceramidas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Esfingolipídeos/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Isoformas de Proteínas , Transfecção , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Stem Cell Res Ther ; 10(1): 152, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151405

RESUMO

BACKGROUND: Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine. METHODS: The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an intracoronary (IC) infusion of vehicle (CON), 25 × 106 pCPC (25 M), or 50 × 106 pCPC (50 M). Animals were followed up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling (left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of 18F-FDG-labeled pCPC was also performed 4 h after infarction in a different subset of animals. RESULTS: Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 ± 10.0% in CON, 46.5 ± 7.4% in 25 M, and 50.2 ± 4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a significantly higher myocardial salvage index in both treated groups (0.35 ± 0.20 in CON; 0.61 ± 0.20, p = 0.04, in 25 M; and 0.63 ± 0.17, p = 0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product. CONCLUSIONS: IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe, and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI clinical trial (NCT02439398).


Assuntos
Miócitos Cardíacos/transplante , Doença Aguda , Animais , Modelos Animais de Doenças , Infarto do Miocárdio , Suínos , Transplante Homólogo
7.
J Am Chem Soc ; 141(19): 7736-7742, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31030513

RESUMO

Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.


Assuntos
Ceramidase Ácida/metabolismo , Imagem Molecular , Células A549 , Ceramidase Ácida/antagonistas & inibidores , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Humanos , Sondas Moleculares/metabolismo
8.
Sci Rep ; 9(1): 4647, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874584

RESUMO

Adult cardiac progenitor/stem cells (CPC/CSC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Assisted by complementary RNAseq analysis, we defined the fraction of the CPC proteome associable with specific functions by comparison with human bone marrow mesenchymal stem cells (MSC), the reference population for cell therapy, and human dermal fibroblasts (HDF), as a distant reference. Label-free proteomic analysis identified 526 proteins expressed differentially in CPC. iTRAQ analysis confirmed differential expression of a substantial proportion of those proteins in CPC relative to MSC, and systems biology analysis defined a clear overrepresentation of several categories related to enhanced angiogenic potential. The CPC plasma membrane compartment comprised 1,595 proteins, including a minimal signature of 167 proteins preferentially or exclusively expressed by CPC. CDH5 (VE-cadherin),  OX2G (OX-2 membrane glycoprotein; CD200), GPR4 (G protein-coupled receptor 4), CACNG7 (calcium voltage-gated channel auxiliary subunit gamma 7) and F11R (F11 receptor; junctional adhesion molecule A; JAM-A; CD321) were selected for validation. Their differential expression was confirmed both in expanded CPC batches and in early stages of isolation, particularly when compared against cardiac fibroblasts. Among them, GPR4 demonstrated the highest discrimination capacity between all cell lineages analyzed.


Assuntos
Diferenciação Celular/fisiologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Adulto , Antígenos CD , Biomarcadores , Caderinas , Canais de Cálcio , Moléculas de Adesão Celular , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteoma/genética , Proteômica/métodos , Receptores de Superfície Celular , Receptores Acoplados a Proteínas G , Transcriptoma/genética
9.
Angew Chem Int Ed Engl ; 58(21): 6911-6915, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30924239

RESUMO

The transport and trafficking of metabolites are critical for the correct functioning of live cells. However, in situ metabolic imaging studies are hampered by the lack of fluorescent chemical structures that allow direct monitoring of small metabolites under physiological conditions with high spatial and temporal resolution. Herein, we describe SCOTfluors as novel small-sized multi-colored fluorophores for real-time tracking of essential metabolites in live cells and in vivo and for the acquisition of metabolic profiles from human cancer cells of variable origin.


Assuntos
Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/metabolismo , Metaboloma , Imagem Molecular/métodos , Neoplasias/metabolismo , Células A549 , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Ionóforos , Microscopia de Fluorescência , Neoplasias/patologia
10.
Circ Res ; 123(5): 579-589, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29921651

RESUMO

RATIONALE: Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE: To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS: CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS: AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.


Assuntos
Mioblastos Cardíacos/transplante , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Disfunção Ventricular Esquerda/terapia , Idoso , Feminino , Humanos , Infusões Intra-Arteriais , Masculino , Pessoa de Meia-Idade , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/complicações , Transplante de Células-Tronco/efeitos adversos , Transplante Homólogo , Disfunção Ventricular Esquerda/complicações
11.
Pharm Res ; 35(3): 49, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29411122

RESUMO

PURPOSE: The induction of autophagy has recently been explored as a promising therapeutic strategy to combat Alzheimer's disease. Among many other factors, there is evidence that ceramides/dihydroceramides act as mediators of autophagy, although the exact mechanisms underlying such effects are poorly understood. Here, we describe how two dihydroceramide desaturase inhibitors (XM461 and XM462) trigger autophagy and reduce amyloid secretion by neurons. METHODS: Neurons isolated from wild-type and APP/PS1 transgenic mice were exposed to the two dihydroceramide desaturase inhibitors to assess their effect on these cell's protein and lipid profiles. RESULTS: Both dihydroceramide desaturase inhibitors increased the autophagic vesicles in wild-type neurons, reflected as an increase in LC3-II, and this was correlated with the accumulation of dihydroceramides and dihydrosphingomyelins. Exposing APP/PS1 transgenic neurons to these inhibitors also produced a 50% reduction in amyloid secretion and/or production. The lipidomic defects triggered by these dihydroceramide desaturase inhibitors were correlated with a loss of S6K activity, witnessed by the changes in S6 phosphorylation, which strongly suggested a reduction of mTORC1 activity. CONCLUSIONS: The data obtained strongly suggest that dihydroceramide desaturase 1 activity may modulate autophagy and mTORC1 activity in neurons, inhibiting amyloid secretion and S6K activity. As such, it is tantalizing to propose that dihydroceramide desaturase 1 may be an important therapeutic target to combat amyloidosis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores Enzimáticos/farmacologia , Neurônios/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Ceramidas/farmacologia , Ceramidas/uso terapêutico , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Oxirredutases/uso terapêutico , Presenilina-1/genética , Cultura Primária de Células , Proteínas Quinases S6 Ribossômicas/metabolismo , Sulfetos/farmacologia , Sulfetos/uso terapêutico
12.
Sci Rep ; 7(1): 12490, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970523

RESUMO

Studies in recent years have established that the principal effects in cardiac cell therapy are associated with paracrine/autocrine factors. We combined several complementary techniques to define human cardiac progenitor cell (CPC) secretome constituted by 914 proteins/genes; 51% of these are associated with the exosomal compartment. To define the set of proteins specifically or highly differentially secreted by CPC, we compared human mesenchymal stem cells and dermal fibroblasts; the study defined a group of growth factors, cytokines and chemokines expressed at high to medium levels by CPC. Among them, IL-1, GROa (CXCL1), CXCL6 (GCP2) and IL-8 are examples whose expression was confirmed by most techniques used. ELISA showed that CXCL6 is significantly overexpressed in CPC conditioned medium (CM) (18- to 26-fold) and western blot confirmed expression of its receptors CXCR1 and CXCR2. Addition of anti-CXCL6 completely abolished migration in CPC-CM compared with anti-CXCR2, which promoted partial inhibition, and anti-CXCR1, which was inefficient. Anti-CXCL6 also significantly inhibited CPC CM angiogenic activity. In vivo evaluation also supported a relevant role for angiogenesis. Altogether, these results suggest a notable angiogenic potential in CPC-CM and identify CXCL6 as an important paracrine factor for CPC that signals mainly through CXCR2.


Assuntos
Quimiocina CXCL6/genética , Miocárdio/metabolismo , Neovascularização Fisiológica/genética , Comunicação Parácrina/genética , Proteoma/genética , Receptores de Interleucina-8B/metabolismo , Células-Tronco/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Movimento Celular , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL6/antagonistas & inibidores , Quimiocina CXCL6/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Proteoma/metabolismo , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
13.
J Lipid Res ; 58(8): 1500-1513, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572516

RESUMO

Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Esfingosina/análogos & derivados , Neoplasias Gástricas/patologia , Acilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pinocitose/efeitos dos fármacos , Esfingosina/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
14.
Front Immunol ; 8: 638, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642759

RESUMO

Mesenchymal stem cells (MSCs) have a large potential in cell therapy for treatment of inflammatory and autoimmune diseases, thanks to their immunomodulatory properties. The encouraging results in animal models have initiated the translation of MSC therapy to clinical trials. In cell therapy protocols with MSCs, administered intravenously, several studies have shown that a small proportion of infused MSCs can traffic to the draining lymph nodes (LNs). This is accompanied with an increase of different types of regulatory immune cells in the LNs, suggesting the importance of migration of MSCs to the LNs in order to contribute to immunomodulatory response. Intranodal (IN), also referred as intralymphatic, injection of cells, like dendritic cells, is being proposed in the clinic for the treatment of cancer and allergy, showing that this route of administration is clinically safe and efficient. In this study, we investigated, for the first time, the biodistribution and the efficacy of Luciferase+ adipose-derived MSCs (Luci-eASCs), infused through the inguinal LNs (iLNs), in normal mice and in inflamed mice with colitis. Most of the Luci-eASCs remain in the iLNs and in the adipose tissue surrounding the inguinal LNs. A small proportion of Luci-eASCs can migrate to other locations within the lymphatic system and to other tissues and organs, having a preferential migration toward the intestine in colitic mice. Our results show that the infused Luci-eASCs protected 58% of the mice against induced colitis. Importantly, a correlation between the response to eASC treatment and a higher accumulation of eASCs in popliteal, parathymic, parathyroid, and mesenteric LNs were found. Altogether, these results suggest that IN administration of eASCs is feasible and may represent an effective strategy for cell therapy protocols with human adipose-derived MSCs in the clinic for the treatment of immune-mediated disorders.

15.
Chem Commun (Camb) ; 53(31): 4394-4397, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28379228

RESUMO

Dihydroceramide desaturase 1 (Des1) catalyzes the last step of ceramide synthesis de novo, thus regulating the physiologically relevant balance between dihydrosphingolipids and sphingolipids. Here we report on the configurational preference of Des1 towards isomeric Δ6-unsaturated dihydroceramide analogs and the discovery of a potent Des1 inhibitor.


Assuntos
Ceramidas/farmacologia , Ácidos Graxos Dessaturases/antagonistas & inibidores , Linhagem Celular Tumoral , Ceramidas/síntese química , Ceramidas/química , Química Click , Ensaios Enzimáticos , Ácidos Graxos Dessaturases/química , Humanos , Isomerismo , Cinética , Especificidade por Substrato
16.
Naunyn Schmiedebergs Arch Pharmacol ; 390(7): 753-759, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28409208

RESUMO

Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1ß and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.


Assuntos
Brônquios/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Ácidos Graxos Monoinsaturados/farmacologia , Nicotiana/toxicidade , Fumaça/efeitos adversos , Sulfetos/farmacologia , Células Cultivadas , Ceramidas/farmacologia , Ceramidas/fisiologia , Células Epiteliais/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-8/genética , Metaloproteinase 9 da Matriz/genética
17.
Chem Phys Lipids ; 205: 34-41, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445710

RESUMO

The dicyclohexylborane-mediated addition of allene 1 to (E)-2-tridecenal affords a quaternary protected 2-amino-2-vinyl-1,3-diol in good yield as a single diastereomer. This compound is readily transformed into the four stereoisomers of the quaternary (E)-2-vinyl analogs of sphingosine. The metabolic fate and the effect of these compounds on the basal sphingolipid metabolism in human A549 lung adenocarcinoma cells has been studied, together with the ceramide analog of the most relevant vinylsphingosine derivative.


Assuntos
Ceramidas/síntese química , Ceramidas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Células A549 , Sobrevivência Celular , Humanos , Serina C-Palmitoiltransferase/antagonistas & inibidores , Esfingolipídeos/química , Esfingosina/síntese química , Estereoisomerismo
18.
Mol Biosyst ; 12(4): 1166-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928714

RESUMO

Although several reports describe the metabolic fate of sphingoid bases and their analogs, as well as their action and that of their phosphates as regulators of sphingolipid metabolizing-enzymes, similar studies for 3-ketosphinganine (KSa), the product of the first committed step in de novo sphingolipid biosynthesis, have not been reported. In this article we show that 3-ketosphinganine (KSa) and its dideuterated analog at C4 (d2KSa) are metabolized to produce high levels of dihydrosphingolipids in HGC27, T98G and U87MG cancer cells. In contrast, either direct C1 O-phosphorylation or N-acylation of d2KSa to produce dideuterated ketodihydrosphingolipids does not occur. We also show that cells respond to d2KSa treatment with induction of autophagy. Time-course experiments agree with sphinganine, sphinganine 1-phosphate and dihydroceramides being the mediators of autophagy stimulated by d2KSa. Enzyme inhibition studies support that inhibition of Des1 by 3-ketobases is caused by their dihydroceramide metabolites. However, this effect contributes to increasing dihydrosphingolipid levels only at short incubation times, since cells respond to long time exposure to 3-ketobases with Des1 overexpression. The translation of these overall effects into cell fate is discussed.


Assuntos
Autofagia/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas , Oxirredutases/antagonistas & inibidores , Esfingosina/farmacologia
19.
Chem Phys Lipids ; 197: 69-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26200919

RESUMO

Sphingolipids (SLs) are essential structural and signaling molecules of eukaryotic cells. Among them, sphingosine 1 phosphate (S1P) is a recognized promoter of cell survival, also involved, inter alia, in inflammation and tumorigenesis processes. The knowledge and modulation of the enzymes implicated in the biosynthesis and degradation of S1P are capital to control the intracellular levels of this lipid and, ultimately, to determine the cell fate. Starting with a general overview of the main metabolic pathways involved in SL metabolism, this review is mainly focused on the description of the most relevant findings concerning the development of modulators of S1P, namely inhibitors of the enzymes regulating S1P synthesis (sphingosine kinases) and degradation (sphingosine 1 phosphate phosphatase and lyase). In addition, a brief overview of the most significant agonists and antagonists at the S1P receptors is also addressed.


Assuntos
Aldeído Liases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Humanos , Fosforilação , Esfingolipídeos/metabolismo
20.
Chembiochem ; 16(4): 641-50, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25676480

RESUMO

Several diseases involve alterations in sphingolipid metabolism, so the development of tools for the analysis of sphingolipid metabolic fluxes is of interest. In this work, ω-azidosphingolipids 1-3 have been synthesized and tested as tracers in live cells. The synthesis starts from (S)-Garner's aldehyde and uses bromide or tosyloxy precursors for the introduction of the azido group into the sphingoid base. Studies in HGC-27 cells showed that probes 1-3 compete with the natural metabolites and are incorporated into sphingolipid pathways without affecting cell viability. The reactivity and bioorthogonality of the terminal azido group have been exploited by means of click reactions with different azadibenzocyclooctyne tags. This allows the mass spectrometric characterization of azidosphingolipidomes in pooled samples from different cell populations after independent treatments, providing proof of concept of the applicability of this technology in sphingolipid metabolic flux analysis.


Assuntos
Azidas/química , Análise do Fluxo Metabólico/métodos , Esfingolipídeos/análise , Esfingolipídeos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Química Click/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA